УДК 524.7-732

ИССЛЕДОВАНИЕ СЛАБЫХ ГАЛАКТИК В ПОЛЕ ГАММА-ВСПЛЕСКА GRB 021004

© 2010 Ю. В. Барышев¹, И. В. Соколов², А. С. Москвитин³, Т. А. Фатхуллин³, Н. В. Набоков¹, Браджеш Кумар⁴

¹Институт Астрономии Санкт-Петербургского Государственного Университета, Санкт-Петербург, Университетский пр.28, 198504 Россия

²ТФ ИНАСАН (Терскольский Филиал института астрономии), Тырныауз, просп. Эльбрусский д. 81, 361624, Россия

³Специальная астрофизическая обсерватория, Нижний Архыз, 369167 Россия

⁴Исследовательский Институт Наблюдательных Наук Ариабатта (ARIES), Наинитал, 263129, Индия Поступила в редакцию 24 августа 2009 г.; принята в печать 15 октября 2009 г.

Приведены результаты анализа BVR_cI_c -наблюдений на 6м телескопе БТА САО РАН поля размером порядка 4' × 4' с центром в родительской галактике GRB 021004. Для 311 галактик, найденных в поле (S/N>3), измерены звездные величины, построены цветовые диаграммы. Проведены дифференциальные и интегральные подсчеты галактик до предела, соответствующего величинам 28.5 (*B*), 28.0 (*V*), 27.0 (R_c), 26.5 (I_c). Создан каталог галактик, включающий 183 объекта, для которых с помощью программы HyperZ определены фотометрические красные смещения до предельных звездных величин: 26.0 (*B*), 25.5 (*V*), 25.0 (R_c), 24.5 (I_c). По оценкам *z* рассмотрено радиальное распределение галактик. Построены кривые, ожидаемые в случае однородного распределения галактик в пространстве, и получена оценка размера и контраста возможных сверхбольших структур, доступных наблюдениям данного типа.

Ключевые слова: гамма-всплески

1. ВВЕДЕНИЕ

Для получения наблюдательных ограничений на существование возможных сверхбольших структур в крупномасштабном распределении видимого вещества во Вселенной в работах [1–3] предложен метод "космической томографии". Для его использования необходимо покрыть достаточно большую часть небесной сферы глубокими снимками отдельных полей, полученными на телескопах класса 3-10 м. Для таких снимков характерна большая глубина проникновения ($z \ge 1$) и малая площадь (от нескольких квадратных угловых секунд до нескольких квадратных градусов). В качестве центров глубоких полей, покрывающих небесную сферу, в работе [1] было предложено использовать направления на гамма-всплески.

Около десятка глубоких снимков было получено по программе оптического отождествления γ всплесков и при исследовании их родительских галактик на 6 м телескопе БТА САО РАН [4]. Результаты исследования нескольких глубоких полей, полученных на БТА, обсуждались в работах [5, 6]. Целью этой работы является выделение и исследование объектов в поле GRB 021004, а также составление каталога далеких галактик. На примере этого поля показана возможность получения ограничений на размеры и контрасты сверхбольших структур по четырехполосным наблюдениям глубоких полей на БТА.

2. НАБЛЮДЕНИЯ И ОБРАБОТКА ДАННЫХ

2.1. Наблюдения и редукция

Фотометрические наблюдения поля родительской галактики γ -всплеска GRB 021004 проводились на БТА САО РАН с 29 ноября по 5 декабря 2002 года (см. [7, 8]) по программе оптического отождествления гамма-всплесков. Площадка центрировалась на координаты родительской галактики $\alpha_{2000.0} = 00^h 26^m 54^s.69$, $\delta_{2000.0} = +18^{\circ} 55' 41''.3$ [9], что соответствует галактическим широте и долготе $b = -43^{\circ} 33' 41''.1$, $114^{\circ} 55' 01''.1$. Наблюдения осуществлялись на редукторе светосилы SCORPIO [10], установленном в главном фокусе, с ПЗС-матрицей ТК1024 формата 1034 × 1034 в качестве приемника излучения. Размер пикселя матрицы составляет 24 × 24 микрона, что соответствует угловому масштабу 0.289" на элемент. Были использованы широкополосные фильтры, которые в комбинации со спектральной чувствительностью ПЗС-матрицы реализуют фотометрическую систему, близкую к стандартной системе Джонсона-Крона-Коузинса BVR_cI_c [11]. Суммарное время экспозиции составило 2600 сек. (*B*), 3600 сек. (*V*), 2700 сек. (R_c), и 1800 сек. (I_c). Условия наблюдений были фотометрические со средним качеством изображения 1.3 угл. секунды. Оно оценивалось как полуширина (FWHM) изображения звездообразных объектов в поле.

Начальная редукция данных проводилась по стандартной методике, применяющейся к ПЗСданным, с использованием пакета ESO-MIDAS 1 , и включала в себя вычитание "электронного нуля", деление на плоское поле, удаление следов интерференции в фильтрах R_c и I_c , удаление следов космических частиц. Все кадры, полученные в одном фильтре, суммировались. Для этого они предварительно приводились к опорному с помощью набора реперных объектов: вычислялось геометрическое преобразование (сдвиг, поворот, масштабирование). Обычно использовалось 7-15 опорных объектов. Для более точного преобразования использовались звездообразные объекты, что позволяло достигать точности 0.2-0.5 элемента матрицы при вычислении сдвига.

Суммарные кадры были одинаково ориентированы и приведены к единой системе координат. Размер области перекрытия суммарных изображений во всех фильтрах составил порядка 4' × 4'.

Астрометрическая привязка редуцированных кадров производилась при помощи программных средств westools и ds9 с использованием каталога USNO-B1.0 [12]. Опорные звезды для привязки к мировой системе координат должны были удовлетворять следующим критериям:

- их центры должны хорошо определяться;
- их изображения не дожны быть перекоплены;
- они не должны быть слишком слабыми, чтобы их положение не искажалось фоновым шумом;

- собственное движение должно отсутствовать или быть минимальным, т.к. наблюдения опорных звёзд в каталогах и наши наблюдения этого поля были проведены в разное время, за которое звезды могли заметно сместиться;
- они не должны накладываться друг на друга.

Было выбрано 6 опорных звезд, по которым осуществлялась привязка. Ошибка астрометрии составила 0".2.

Далее, редуцированные и привязанные к мировой системе координат кадры при помощи процедур ALIGN/IMAGE и REBIN/ROTATE пакета ESO-MIDAS совмещались между собой и, таким образом, определялась область, общая для всех кадров, в которой производился поиск объектов для исследования (см. Рис. 1).

2.2. Выделение объектов и их фотометрия

Для поиска и массовой фотометрии объектов в поле был использован программный пакет SExtractor [13]. Критериями для разделения звездообразных и протяженных объектов служил параметр <STAR CLASS> пакета SExtractor. Объект считался звездообразным, если параметр <STAR CLASS> для него был больше 0.7.

Пакет позволяет измерять несколько видов звездных величин:

- *Изофотная величина* определена как интегральный поток по области с интенсивностью выше заданного предела;
- Исправленная изофотная величина определялась следующим способом: профиль объекта аппроксимировался двумерной гауссианой и, исходя из найденных параметров, вводилась соответствующая поправка к изофотной величине;
- Автоматическая величина, в работе [14] было показано, что для объектов со звездообразными, степенными и экспоненциальными профилями, свернутыми с гауссианой, примерно 92% потока заключено в апертуре радиуса kr_1 , где $k \approx 2$, а $r_1 = \frac{\sum rI(r)}{\sum I(r)}$. В пакете SExtractor определяется эллиптическая апертура с главными осями ϵkr_1 и kr_1/ϵ , где ϵ — эллиптичность. Автоматическая величина определена как звездная величина в такой апертуре;

¹MIDAS (Munich Image Data Analysis System) распространяется и поддерживается Европейской Южной Обсерваторией

Рис. 1. Обнаруженные в четырех фильтрах объекты (галактики обведены квадратами, звездообразные объекты выделены крестами). Черной стрелкой отмечена родительская галактика.

 Апертурная величина определена как величина, измеренная в круговой апертуре, заданной пользователем.

Полная величина равна автоматической, если в соответствующую апертуру данного объекта не попадает соседний, изменяющий зв. величину более, чем на 0.1 зв. величины. В противном случае используется исправленная изофотная величина.

Построение фона — очень важная процедура при автоматическом поиске объектов. Поэтому оно контролировалось визуально. Аппроксимированный фон проверялся на отсутствие структур около ярких объектов и резких флуктуаций на малых масштабах (меньше, чем 5–7 FWHM).

В качестве предела обнаружения было выбрано 3σ -превышение интенсивности над фоном, где σ — флуктуация фона. Найденный кандидат считался реальным объектом, если он занимал не менее четырех соседних элементов матрицы. Всего было обнаружено 637, 771, 1169 и 615 объектов в B, V, R_c и I_c фильтрах соответственно. Для всех объектов каталога были измерены изофотная, апертурная и полная величины.

Величина объекта в инструментальной системе вычислялась следующим образом:

$$m_{aper} = -2.5 \times \log(\frac{F}{T_{exp}}) - \frac{k}{\cos Z},\qquad(1)$$

где F — поток от объекта (в отсчетах) в заданной апертуре, T_{exp} — время экспозиции (в секундах),

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 65 № 4 2010

k — коэффициент атмосферной экстинкции и Z — зенитное расстояние (в градусах). Коэффициенты атмосферной экстинкции взяты из работы [15] и равны, соответственно, $k_B = 0.34$, $k_V = 0.21$, $k_{R_c} = 0.15$ и $k_{I_c} = 0.1$ звездной величины. В случае звездообразных объектов для вычисления инструментальной величины использовалась так называемая поправка за конечную апертуру. Тогда выражение для полной величины записывается как

$$m = m_{aper} - \delta m,$$

где m_{aper} — зв. величина, определяемая выражением (1) и δm — поправка за конечную апертуру, определяемая по кривым роста для ярких звездообразных объектов в поле.

Для определения ошибок измерения зв. величин вычислялось отношение "сигнал/шум":

$$\frac{S}{N} = \frac{F}{\sqrt{F/g + A \times \sigma^2}},$$

где F — поток от объекта (в отсчетах) в заданной апертуре, g — квант преобразования (в электронах/отсчет), A — количество элементов в апертуре и σ^2 — дисперсия фона (в отсчетах). Затем вычисляется ошибка:

$$\sigma_m = \frac{2.5}{\ln 10} \times \frac{\sigma_F}{F} = \frac{2.5}{\ln 10} \times \frac{1}{S/N}.$$

Фотометрическая калибровка производилась с помощью вторичных стандартов из [16], для

которых в каждом фильтре были вычислены разности инструментальных и стандартных величин. Их усредненные значения были приняты за нуль-пункты. Ошибки нуль-пунктов составили 0.01-0.02 зв.в

Массовая фотометрия объектов в поле позволила определить предельную звездную величину. Пределом обнаружения считалась средняя величина объектов с S/N=3, 28.0, 27.5, 27.0 и 26.0 в B, V, R_c и I_c фильтрах соответственно.

3. ОЦЕНКА ФОТОМЕТРИЧЕСКИХ КРАСНЫХ СМЕЩЕНИЙ

Определение спектроскопических красных смещений для сотен слабых объектов в глубоких полях достаточно сложный и трудоемкий процесс, требующий больших затрат наблюдательного времени. Но для многих задач вполне приемлемыми оказываются фотометрические оценки красных смещений, которые делаются по результатам многоцветной фотометрии. Точность таких оценок около 10%, но этого часто достаточно для статистических исследований свойств далеких объектов.

Фотометрические красные смещения для галактик, детектированных в поле родительской галактики GRB 021004 по данным широкополосных наблюдений на БТА, были оценены с помощью программного пакета HyperZ [17].

В качестве входных данных в пакете НурегZ используются BVR_cI_c -величины и их ошибки, поглощение в нашей Галактике, параметры космологической модели, спектральное распределение энергии галактик различных типов, различные законы экстинкции в галактиках. Поглощение в нашей Галактике было принято равным E(B-V) = 0.025 согласно картам пыли из работы [18]. Использовалась космологическая модель с $H_0 = 70$ км с⁻¹ Мпк⁻¹, $\Omega_M = 0.3$ и $\Omega_{\Lambda} = 0.7$.

Спектральные распределения энергии брались из библиотеки модельных спектров (шаблоны, шаблонные спектры), предоставляемые пакетом HyperZ. Модели отличаются характером звездообразования. Это либо постоянный темп, либо экспоненциальное падение или начальная вспышка звездообразования в виде дельта-функции.

Для оценки фотометрических красных смещений галактик важно учитывать особенности внутренних законов экстинкции и поглощения на луче зрения, т.к. это существенно влияет на результат. Рассматривались варианты, представленные в пакете HyperZ. Это такой же закон поглощения, как в нашей Галактике законы для Большого и Малого Магелановых Облаков и закон экстинкции для галактик со звездообразованием. Эти законы отличаются наклоном кривых в дальней ультрафиолетовой области и, главное, наличием или отсутствием полосы поглощения графита на 2200А. Диапазон поглощения задавался одинаковым и составлял $A_V = 0.0-3.0$ зв.в. с шагом 0.3. Красное смещение было зафиксировано в диапазоне z = 0.0 - 5.0 с шагом 0.1.

Помимо оценки красного смещения были оценены и другие параметры галактик (см. Табл. 1). Например, спектральный тип галактики, который определялся на основании подобия распределения энергии в спектре объекта одному из теоретических шаблонных спектров.

4. РЕЗУЛЬТАТЫ

4.1. Каталог обнаруженных объектов

Из обнаруженных в глубоком поле объектов были отобраны те, для которых вероятность иметь красное смещение, совпадающее с вычисленным, больше или равна 0.9. Окончательный каталог содержит 183 внегалактических объекта в диапазоне красных смещений от 0.05 до 3.8 (Рис. 1 и Табл. 1).

Таблица 1. Каталог объектов, часть 1. # — номер объекта; RA и Dec — экваториальные координаты на эпоху 2000.0; R mag +/- Еггог — звездная величина в полосе R; A и B — большая и малая полуоси эллипса, описывающего объект; Θ — наклон большой оси объекта к горизонтальной оси кадра; Ellip — эллиптичность объекта; Z — фотометрическое красное смещение; % — вероятность определения красного смещения по имеющимся данным; Туре — тип галактики. Из-за технической ошибки один объект в каталоге повторяется дважды (объекты #173, #180 помечены звёздочкой). На основных результатах работы эта ошибка не сказывается.

#	RA	Dec	R mag	Error	А	В	Θ	Ellip	Z	%	Туре
1	6.748988	18.96673	22.98	0.06	2.077	2.017	-19.27	0.029	2.45	99.990	Burst
2	6.754534	18.96330	22.45	0.06	2.429	2.077	-46.64	0.145	0.42	95.520	Burst
3	6.767069	18.95318	23.90	0.13	2.171	1.303	49.06	0.400	0.41	99.930	Sb
4	6.729459	18.88992	19.60	0.05	4.553	3.624	29.35	0.204	0.35	99.440	Е

Таблица 1. (Продолжение)

#	RA	Dec	R mag	Error	А	В	Θ	Ellip	Ζ	%	Туре
5	6.736205	18.89336	20.19	0.05	3.702	3.484	3.76	0.059	0.45	98.920	Burst
6	6.705855	18.91868	23.85	0.10	1.724	1.562	-37.67	0.094	1.75	99.800	Burst
7	6.734323	18.89186	23.95	0.10	1.628	1.547	7.16	0.050	0.65	100.000	Im
8	6.731594	18.89799	24.01	0.10	1.879	1.260	52.26	0.330	0.53	99.970	Burst
9	6.743403	18.88873	22.93	0.08	2.668	1.861	-88.43	0.303	0.73	98.500	Burst
10	6.702297	18.91715	22.08	0.05	2.635	2.464	31.56	0.065	0.62	99.970	Е
11	6.728497	18.90112	23.28	0.08	2.503	1.779	52.79	0.289	0.73	99.830	Е
12	6.705405	18.91507	23.11	0.08	2.483	2.093	-17.57	0.157	1.46	98.870	Burst
13	6.736987	18.89948	23.44	0.08	2.118	1.452	-87.19	0.315	2.78	99.820	Sd
14	6.737479	18.90041	21.93	0.05	2.723	2.447	48.22	0.101	0.44	96.280	Burst
15	6.742126	18.89711	23.49	0.11	2.220	1.719	20.11	0.226	0.41	99.780	Burst
16	6.726112	18.90621	21.96	0.05	2.498	2.307	-26.04	0.076	0.35	98.190	Burst
17	6.725135	18.90713	23.23	0.09	2.508	1.875	-30.05	0.253	1.72	99.920	Burst
18	6.729369	18.90655	24.26	0.11	1.472	1.303	59.90	0.115	2.19	94.430	Burst
19	6.731282	18.90706	23.10	0.07	2.320	1.569	-42.97	0.324	0.43	99.940	Burst
20	6.732459	18.90715	21.09	0.05	5.466	2.463	-12.78	0.549	0.71	90.680	Burst
21	6.733622	18.90553	24.04	0.10	1.739	1.406	-2.71	0.192	2.10	87.200	Burst
22	6.730179	18.90870	22.98	0.07	2.695	2.272	80.49	0.157	3.30	99.990	Burst
23	6.704854	18.93039	20.34	0.05	4.999	3.596	35.40	0.281	0.52	94.570	Е
24	6.745641	18.89719	23.67	0.12	2.008	1.888	-33.24	0.060	2.05	98.080	Burst
25	6.708762	18.92858	20.82	0.05	4.922	2.445	39.95	0.503	0.60	94.970	Burst
26	6.746276	18.89642	23.08	0.10	2.590	1.733	-22.66	0.331	1.20	99.940	S0
27	6.705244	18.92806	22.28	0.06	2.994	2.168	-45.99	0.276	0.56	99.880	Burst
28	6.739671	18.90300	22.61	0.07	2.427	1.662	-75.29	0.315	1.10	99.980	Е
29	6.715098	18.90405	21.00	0.05	3.372	2.312	38.00	0.314	0.46	99.500	Burst
30	6.721831	18.89889	22.05	0.05	2.541	2.317	-37.56	0.088	0.71	99.920	Im
31	6.735670	18.90948	23.75	0.10	2.608	1.177	-38.20	0.549	1.88	93.270	Burst
32	6.709185	18.93276	20.69	0.05	3.152	2.578	44.84	0.182	0.55	98.720	Burst
33	6.733432	18.91188	24.07	0.10	1.466	1.173	-48.54	0.200	0.94	99.930	Burst
34	6.737649	18.90976	21.04	0.05	3.455	2.344	-63.99	0.321	0.40	99.620	Sa
35	6.745690	18.90291	23.04	0.08	3.301	1.889	-49.71	0.428	2.26	97.310	Burst
36	6.722170	18.89967	21.41	0.05	3.790	2.736	-65.25	0.278	1.15	99.930	S0
37	6.705767	18.93597	24.23	0.13	1.585	1.556	6.20	0.018	1.78	99.090	Burst
38	6.750864	18.89911	21.84	0.05	3.196	2.428	45.59	0.240	0.23	93.710	Е

Таблица 1. (Продолжение)

#	RA	Dec	R mag	Error	А	В	Θ	Ellip	Z	%	Туре
39	6.739073	18.90928	21.16	0.05	3.426	2.850	-48.73	0.168	0.41	99.380	Sa
40	6.722549	18.92421	21.23	0.05	2.826	2.562	-34.01	0.093	0.41	99.950	Е
41	6.712472	18.93355	22.06	0.05	4.627	2.348	-63.39	0.492	0.44	96.490	Burst
42	6.713016	18.93348	22.05	0.05	2.492	1.988	-46.21	0.202	1.05	99.630	Burst
43	6.727865	18.92069	21.44	0.05	2.714	2.082	-51.35	0.233	0.55	99.070	Е
44	6.711030	18.93460	24.37	0.12	1.741	1.073	-50.70	0.384	0.97	99.960	S0
45	6.726254	18.92374	22.85	0.06	2.431	1.776	-53.73	0.269	1.15	99.900	Burst
46	6.727385	18.92389	22.25	0.06	2.658	2.140	-23.10	0.195	0.66	99.550	Sc
47	6.703103	18.94228	23.81	0.12	2.020	1.433	-82.58	0.291	3.49	96.700	Burst
48	6.716295	18.93372	23.95	0.10	1.801	1.482	-23.89	0.177	0.22	99.230	Burst
49	6.732539	18.92081	23.71	0.12	2.223	1.170	1.64	0.474	1.92	98.830	Burst
50	6.726122	18.92666	22.75	0.07	2.874	1.953	-77.94	0.321	1.25	99.590	Burst
51	6.727129	18.92623	23.80	0.14	1.660	1.236	-55.46	0.256	1.59	99.950	Burst
52	6.705105	18.94435	23.35	0.09	1.844	1.740	-18.47	0.056	0.50	99.910	Е
53	6.711551	18.93976	23.15	0.10	2.301	1.877	-45.06	0.184	0.61	99.800	Im
54	6.737527	18.91839	21.25	0.05	3.041	2.554	30.97	0.160	0.10	99.950	Burst
55	6.713956	18.93758	24.75	0.16	2.062	0.819	-55.35	0.603	1.93	99.360	Burst
56	6.743444	18.91343	22.97	0.09	2.417	1.977	57.70	0.182	0.50	99.980	S0
57	6.741271	18.91543	23.00	0.08	2.151	1.976	19.49	0.081	1.03	100.000	Burst
58	6.720520	18.93474	20.29	0.05	3.587	3.363	-32.56	0.063	2.23	99.250	Burst
59	6.720910	18.93579	21.33	0.05	2.852	2.724	-9.52	0.045	0.45	99.980	Im
60	6.724590	18.93225	24.55	0.13	1.306	1.185	-3.71	0.092	1.09	99.960	Е
61	6.730726	18.92726	23.36	0.10	2.335	1.788	21.24	0.234	0.60	100.000	Sc
62	6.748846	18.91243	22.85	0.07	2.715	2.155	-52.13	0.206	0.64	100.000	Е
63	6.736760	18.92292	22.22	0.06	3.263	2.453	70.60	0.248	0.39	99.560	Burst
64	6.753927	18.90931	21.29	0.05	3.308	2.441	78.50	0.262	0.35	90.210	Е
65	6.726554	18.93169	24.46	0.14	1.761	1.341	54.14	0.238	0.57	99.000	Burst
66	6.711230	18.94458	25.11	0.19	1.336	0.746	16.83	0.442	0.51	100.000	Burst
67	6.709861	18.94726	22.03	0.06	3.300	2.313	50.36	0.299	0.46	99.740	S0
68	6.736685	18.92534	21.77	0.05	2.658	2.189	-24.78	0.177	0.41	95.920	Sa
69	6.722001	18.93792	24.14	0.17	1.721	0.962	86.30	0.441	2.81	99.990	Burst
70	6.732282	18.92990	24.12	0.15	1.536	1.053	-76.79	0.314	0.35	86.370	Burst
71	6.758679	18.90984	20.60	0.05	3.836	3.334	33.44	0.131	0.40	86.390	Burst
72	6.721132	18.94138	20.47	0.05	3.866	3.689	-21.19	0.046	0.29	99.980	Е

Таблица 1. (Продолжение)

#	RA	Dec	R mag	Error	А	В	Θ	Ellip	Ζ	%	Туре
73	6.733374	18.93218	21.76	0.05	3.137	1.919	59.43	0.388	1.09	98.950	E
74	6.736860	18.92805	24.15	0.10	1.332	1.287	-10.30	0.034	0.64	99.650	Burst
75	6.732345	18.93360	23.11	0.07	2.416	1.519	24.85	0.371	0.35	99.910	S0
76	6.730218	18.93581	22.46	0.06	2.979	1.954	-21.09	0.344	0.44	98.440	Е
77	6.729551	18.93704	20.21	0.05	3.677	3.230	36.52	0.122	0.44	98.650	Е
78	6.737521	18.93082	20.05	0.05	3.210	2.526	51.20	0.213	0.38	91.080	Burst
79	6.736118	18.93245	21.37	0.05	3.834	2.793	-35.86	0.272	2.97	99.920	Burst
80	6.747920	18.92270	20.59	0.05	4.587	3.421	22.91	0.254	0.63	97.280	Burst
81	6.743696	18.92608	22.59	0.06	2.449	2.312	-10.35	0.056	0.64	99.850	S0
82	6.741006	18.92750	22.64	0.06	2.975	2.208	-66.72	0.258	0.50	96.220	Burst
83	6.731962	18.93714	22.67	0.06	2.493	1.749	37.32	0.298	0.35	96.560	Burst
84	6.753860	18.91760	21.42	0.05	3.386	2.719	-46.55	0.197	0.40	87.660	Burst
85	6.721753	18.94624	23.28	0.08	2.316	1.664	-50.62	0.282	0.65	99.490	Е
86	6.719014	18.94839	21.16	0.05	2.837	2.675	-32.09	0.057	0.41	99.650	Burst
87	6.751827	18.92470	23.26	0.09	2.001	1.508	44.36	0.247	0.41	92.240	Burst
88	6.724735	18.94761	23.39	0.10	2.556	1.541	-18.54	0.397	0.51	99.980	Burst
89	6.749628	18.92740	23.03	0.08	2.284	1.739	-34.22	0.239	0.58	100.000	Burst
90	6.759024	18.91769	22.36	0.06	2.469	1.848	-0.08	0.251	0.79	99.990	Burst
91	6.718533	18.95525	21.09	0.05	3.802	2.299	-47.04	0.395	1.04	99.790	Е
92	6.768041	18.91343	22.45	0.06	3.135	2.103	51.00	0.329	0.56	97.040	Е
93	6.745049	18.93361	21.86	0.05	4.577	2.252	-37.72	0.508	2.41	89.890	Burst
94	6.761848	18.92041	20.23	0.05	5.429	2.674	-3.17	0.508	0.24	99.590	Е
95	6.725812	18.95096	23.29	0.10	1.982	1.717	14.27	0.134	0.46	99.850	Burst
96	6.762870	18.91469	22.26	0.06	4.744	2.267	18.97	0.522	0.79	99.990	Burst
97	6.751862	18.92347	23.80	0.10	1.719	1.446	27.85	0.159	0.98	99.830	Burst
98	6.720642	18.95601	21.54	0.05	4.891	2.665	77.86	0.455	0.80	98.490	Е
99	6.741830	18.93889	20.73	0.05	3.182	3.089	-19.42	0.029	0.35	98.320	Е
100	6.771370	18.91395	22.54	0.06	2.699	2.033	-79.96	0.247	0.30	99.960	S0
101	6.770688	18.91605	20.05	0.05	5.174	3.112	81.96	0.399	0.14	88.850	Burst
102	6.758063	18.92635	23.57	0.10	2.783	1.709	-23.73	0.386	1.29	99.750	Е
103	6.743377	18.93955	24.37	0.13	1.752	1.250	-21.71	0.286	2.27	95.530	Sb
104	6.724585	18.95566	23.63	0.09	1.850	1.632	57.80	0.118	0.45	99.490	Burst
105	6.724108	18.95733	21.32	0.05	3.735	2.886	-53.47	0.227	0.41	99.180	Sb
106	6.765739	18.92245	23.42	0.08	1.863	1.733	6.12	0.070	3.04	99.180	Burst

Таблица 1. (Продолжение)

#	RA	Dec	R mag	Error	А	В	Θ	Ellip	Z	%	Туре
107	6.749199	18.93657	23.25	0.07	2.036	1.678	34.36	0.176	0.71	99.830	Е
108	6.772387	18.91769	22.31	0.06	2.811	2.307	-12.73	0.179	0.84	99.850	Burst
109	6.741495	18.94304	22.15	0.05	3.146	2.197	-26.56	0.302	0.57	97.760	Е
110	6.746771	18.93933	19.63	0.05	4.419	3.544	-59.63	0.198	0.10	89.820	Burst
111	6.761366	18.92702	24.74	0.16	1.605	1.169	38.40	0.272	2.33	99.980	S0
112	6.763813	18.92675	18.62	0.05	4.689	4.309	-6.05	0.081	2.01	99.990	Burst
113	6.753056	18.93486	24.94	0.16	1.227	0.938	-34.79	0.235	2.76	94.010	Sd
114	6.755443	18.93353	23.96	0.14	1.414	1.348	-24.95	0.046	1.44	99.910	Burst
115	6.736525	18.94930	24.59	0.13	1.333	1.177	-58.65	0.117	2.09	99.950	E
116	6.774732	18.91794	22.20	0.05	2.536	1.979	-19.45	0.220	0.35	99.750	E
117	6.755332	18.93582	23.94	0.15	1.607	1.113	-67.05	0.307	1.03	99.760	E
118	6.750640	18.93991	23.59	0.09	2.627	1.381	10.56	0.474	1.19	99.680	Sa
119	6.730174	18.95795	21.13	0.05	3.576	2.819	-27.46	0.212	2.45	99.990	Е
120	6.759603	18.93127	23.60	0.09	2.861	1.424	65.14	0.502	2.45	100.000	Burst
121	6.731014	18.96300	23.05	0.07	2.313	2.155	41.70	0.068	1.00	99.970	Burst
122	6.751646	18.94078	22.00	0.06	2.762	2.264	-62.94	0.180	0.36	99.470	Burst
123	6.730519	18.96472	21.78	0.05	2.432	2.290	36.43	0.058	0.30	98.730	S0
124	6.749580	18.94896	21.26	0.05	2.786	2.548	-24.11	0.085	0.05	99.980	Е
125	6.744153	18.95331	23.28	0.08	2.233	1.624	-38.00	0.273	2.27	96.730	Burst
126	6.736730	18.95718	21.41	0.05	3.700	2.580	48.97	0.303	0.10	99.990	Im
127	6.738836	18.95907	23.13	0.09	3.987	1.476	58.88	0.630	1.34	91.000	Burst
128	6.776626	18.92780	23.46	0.08	2.024	1.731	41.15	0.145	2.51	99.960	Burst
129	6.747582	18.95283	22.75	0.07	2.287	1.997	29.62	0.126	1.82	88.150	Burst
130	6.765412	18.93769	23.46	0.12	2.501	1.399	-43.17	0.440	2.26	99.770	Burst
131	6.733354	18.96597	23.83	0.11	2.314	1.430	-50.28	0.382	0.05	99.990	Sc
132	6.732174	18.95842	22.65	0.07	2.542	2.141	50.06	0.158	2.09	99.990	Burst
133	6.767573	18.93849	22.83	0.07	2.385	1.965	-45.93	0.176	0.56	99.960	Sa
134	6.760662	18.94512	23.96	0.13	1.723	1.167	-49.25	0.323	2.63	99.180	Sa
135	6.730542	18.96223	21.67	0.05	4.197	1.976	-80.87	0.529	0.75	99.970	Sb
136	6.754972	18.94135	24.19	0.11	1.639	1.287	-12.54	0.215	1.98	99.640	Burst
137	6.776520	18.93486	20.06	0.05	3.848	3.395	-4.38	0.118	2.34	98.240	Burst
138	6.736278	18.96887	23.39	0.12	2.524	1.401	-82.57	0.445	0.35	99.830	Burst
139	6.766796	18.94414	22.78	0.07	2.243	2.024	33.94	0.098	0.45	99.930	S0
140	6.723733	18.89472	23.93	0.10	2.001	1.431	-69.78	0.285	2.27	98.600	Burst

Таблица 1. (Продолжение)

#	RA	Dec	R mag	Error	А	В	Θ	Ellip	Z	%	Туре
141	6.760657	18.95011	23.14	0.09	2.117	1.727	-50.93	0.184	1.66	91.760	Burst
142	6.737427	18.97238	20.36	0.05	3.984	2.893	-86.99	0.274	0.39	92.300	Burst
143	6.750421	18.96291	22.42	0.06	2.742	2.217	66.55	0.191	0.39	98.010	Burst
144	6.753414	18.96141	22.71	0.06	2.557	1.750	53.68	0.316	2.22	97.480	Burst
145	6.752117	18.92868	24.53	0.19	1.629	0.973	2.74	0.403	1.34	100.000	Sc
146	6.758030	18.92137	23.78	0.13	1.868	1.380	-30.13	0.261	0.29	99.880	Burst
147	6.759220	18.92332	23.60	0.09	1.826	1.556	32.26	0.148	3.69	99.790	Burst
148	6.769590	18.93874	23.70	0.12	1.835	1.429	-5.32	0.221	2.07	99.930	Burst
149	6.769437	18.94998	24.28	0.14	1.103	0.501	89.53	0.546	2.95	90.880	Burst
150	6.738302	18.94934	23.63	0.10	2.680	1.952	-25.90	0.272	3.31	99.950	Е
151	6.723996	18.94461	24.10	0.13	2.223	1.609	-29.12	0.276	2.40	95.140	Sc
152	6.730829	18.94240	24.24	0.16	1.487	1.022	44.88	0.313	0.63	100.000	Sa
153	6.740344	18.95894	24.36	0.17	2.201	1.406	-69.58	0.361	2.69	96.410	Sd
154	6.743816	18.96026	24.04	0.17	1.677	1.430	38.54	0.147	3.54	99.900	Sa
155	6.732366	18.96473	23.51	0.13	1.640	1.435	-47.48	0.125	3.80	87.610	Е
156	6.743285	18.89193	23.19	0.11	2.120	1.636	60.39	0.228	0.50	99.270	Burst
157	6.745655	18.88898	23.67	0.11	2.148	1.379	-16.61	0.358	3.60	99.990	Burst
158	6.747603	18.89697	24.03	0.16	1.605	1.014	-44.01	0.368	1.39	99.590	Burst
159	6.735456	18.90313	24.66	0.18	1.423	1.141	35.47	0.198	1.63	96.560	Burst
160	6.730319	18.90195	24.90	0.16	1.918	0.701	54.44	0.635	1.53	99.990	Е
161	6.730860	18.90607	24.00	0.16	1.525	1.201	20.44	0.212	1.66	96.430	Burst
162	6.731735	18.90833	24.04	0.11	1.973	1.415	-18.91	0.283	2.26	99.990	Burst
163	6.742588	18.90509	22.45	0.06	3.378	1.967	11.62	0.418	0.35	99.020	Burst
164	6.744093	18.91145	24.70	0.14	1.391	1.059	47.77	0.239	2.24	100.000	Burst
165	6.749406	18.91006	23.97	0.13	1.804	1.208	-43.74	0.330	2.63	99.990	Im
166	6.747906	18.91661	23.93	0.11	1.999	1.173	35.16	0.413	0.54	93.320	Burst
167	6.739581	18.92470	23.49	0.10	2.237	1.546	-42.31	0.309	0.43	89.410	Burst
168	6.739374	18.92036	24.56	0.14	1.787	1.020	-14.99	0.429	2.67	97.450	S0
169	6.735257	18.92176	23.79	0.12	1.426	1.284	20.96	0.100	1.68	99.990	Burst
170	6.730132	18.91267	23.93	0.16	3.339	0.867	-46.04	0.740	0.42	98.610	Burst
171	6.728870	18.91431	23.42	0.11	2.211	1.813	-49.87	0.180	1.29	99.670	S0
172	6.725771	18.90754	23.76	0.09	2.035	1.415	-36.30	0.304	2.09	99.720	Burst
173*	6.716690	18.90568	23.10	0.09	3.120	1.616	-72.57	0.482	0.10	99.990	Burst
174	6.703195	18.93548	20.80	0.05	4.402	3.699	34.14	0.160	0.51	85.610	Burst

#	RA	Dec	R mag	Error	А	В	Θ	Ellip	Ζ	%	Туре
175	6.708062	18.93785	23.04	0.09	3.789	1.971	-54.30	0.480	0.64	99.750	Sa
176	6.714692	18.93546	23.92	0.10	2.655	1.027	-51.73	0.613	1.12	99.990	Burst
177	6.718461	18.93935	24.08	0.11	1.873	1.334	-33.51	0.288	0.31	100.000	Burst
178	6.734882	18.92871	24.82	0.14	1.144	1.013	-47.51	0.114	2.69	100.000	Burst
179	6.729826	18.92184	25.11	0.27	1.198	0.903	-44.68	0.246	1.26	99.910	Burst
180*	6.716690	18.90568	23.10	0.09	3.120	1.616	-72.57	0.482	0.10	99.990	Burst
181	6.711601	18.90566	25.49	0.19	1.024	0.594	-86.17	0.420	1.66	98.740	Е
182	6.703599	18.91426	23.16	0.09	3.002	1.722	-39.10	0.426	1.50	98.900	Sd
183	6.727688	18.92827	24.17	0.15	1.481	1.099	-19.94	0.258	2.21	99.980	Е

Таблица 1. (Продолжение)

Кроме того, для 311 галактик поля определены звездные величины в четырех фильтрах и их ошибки, красные смещения, мировые координаты на эпоху 2000 года, типы (в некоторых случаях подходящими по критерию χ^2 были несколько типов одновременно, поэтому необходимо детальное исследование каждого объекта в отдельности), эллиптичности, классы звездообразности, большие и малые полуоси вписанных эллипсов А и В, а также соответствующие позиционные углы Θ . В Табл. 1 приведены некоторые из перечисленных параметров для 183 галактик с надежными оценками фотометрических красных смещений.

4.2. Наблюдаемые соотношения для слабых галактик

Созданный каталог галактик в поле γ -всплеска GRB 021004 позволяет изучать наблюдаемые связи между многими параметрами галактик и проводить предварительный (без знания красного смещения) отбор объектов для более детального исследования.

В качестве примера для галактик этого поля были построены диаграммы цвет—величина (Рис. 2), проведены дифференциальные и интегральные подсчеты (Рис. 3 и 4).

Показатели цвета (Рис. 2) отражают форму непрерывного спектра галактики в зависимости от наблюдаемого потока и могут быть использованы для планирования будущих детальных наблюдений этих галактик на других телескопах. Дифференциальные и интегральные подсчеты галактик данного поля (Рис. 3 и 4) необходимы для сравнения с будущими наблюдениями соседних полей на БТА и других телескопах, участвующих в настоящей программе.

4.3. Зависимости наблюдаемых величин от величины z

Полученные фотометрические оценки z для галактик поля γ -всплеска GRB 021004 позволяют изучать как реально наблюдаемую эволюцию параметров галактик разных типов, так и эволюцию крупномасштабной структуры Вселенной в радиальном направлении. Необходимо отметить, что в таких задачах как эволюция функции светимости галактик разных типов, которые выявляются программой HyperZ подгонкой шаблонных непрерывных спектров галактик по широкополосным фотометрическим наблюдениям, а также обнаружение сверхбольших неоднородностей в пространственном распределении галактик, вполне достаточно оценок красного смещения порядка 10–20%.

В качестве примера мы приводим зависимости звездной величины обнаруженных объектов от фотометрического красного смещения, которые представлены на Рис. 5. Эти диаграммы показывают наличие довольно широкой функции светимости у далеких галактик, а также диапазон видимых звездных величин, соответствующий фиксированному красному смещению.

4.4. Поиск сверхбольших структур

Для однородного распределения галактик в пространстве ожидается гладкое распределение по красным смещениям. Глубокие обзоры являются ограниченными по звездной величине выборками, для которых распределение галактик по красным смещениям обычно аппроксимируется формулой из [2]:

$$N_{mod}(z,\Delta z) = A z^{\alpha} e^{\left(-\frac{z}{z_0}\right)^{\beta}} \Delta z, \qquad (2)$$

Рис. 2. Диаграммы цвет-величина для обнаруженных галактик поля.

где $N_{mod}(z, \Delta z)$ есть число галактик с красными смещениями в интервале $(z, z + \Delta z)$, свободные параметры α, β, z_0 находятся с помощью метода наименьших квадратов, и A параметр нормировки, который соответствует условию $\int N_{mod} = N_{total}$.

В данной работе проведен анализ радиального распределения галактик с шагом $\Delta z = 0.2$ и $\Delta z = 0.3$ с целю выделения возможных областей повышенной и пониженной плотности. Переходя от $\Delta z = 0.2$ к $\Delta z = 0.3$ выделяются большие, устойчивые к рассматриваемому масштабу Δz структуры. В качестве меры отклонения наблюдаемого распределения красных смещений $N_{obs}(z, \Delta z)$ от ожидаемого $N_{mod}(z, \Delta z)$ для данного бина $(z, \Delta z)$ использовалась формула:

$$\sigma_{obs}(z,\Delta z) = \frac{\Delta N_{obs}}{N_{mod}} = \frac{N_{obs}(z,\Delta z) - \langle N \rangle}{\langle N \rangle}, \quad (3)$$

где среднее ожидаемое число галактик $\langle N \rangle = N_{mod}(z, \Delta z)$ дается формулой (2). Основываясь на соотношении (3), выделяются области (с номером i) с повышенной (Over Density Region —

ODR_i) и пониженной (Under Density Region — UDR_i) плотностью числа галактик относительно пуассоновского уровня σ_p , т.е. области с относительной флуктуацией плотности $\Delta N/N > +\sigma_p$ и $\Delta N/N < -\sigma_p$.

На Рис. 6 приведены радиальные распределения галактик (точки) В поле GRB 021004, с размерами бинов $\Delta z = 0.2$ $(\Delta r = 600 Mpc/h, h = H/(100 km/s/Mpc))$ и $\Delta z = 0.3$ ($\Delta r = 900 Mpc/h$). Там же построены теоретически ожидаемые распределения (толстая гладкая линия) для случая однородного распределения галактик в пространстве, отклонение от которого вызываются флуктуациями Пуассона (σ_p), коррелированными структурами (σ_{corr}) и возможными систематическими ошибками (*σ_{systematic}*)[2]. Коэффициенты теоретических респределений для бинов $\Delta z = 0.2$: $\alpha = 0.63 \pm 0.30$, $z_0 = 0.9, \ \beta = 1.27 \pm 0.30, \ A = 57.28 \pm 11.45, \ для$ бинов $\Delta z = 0.3$: $\alpha = 0.74 \pm 0.47$, $z_{0} = 0.9$, $\beta = 1.27 \pm 0.38, A = 89.71 \pm 23.47.$

На Рис. 7 приведены относительные отклонения

Рис. 3. Дифференциальные подсчеты галактик в четырех фильтрах.

числа галактик от теоретических кривых в бинах $\Delta z = 0.2$ и $\Delta z = 0.3$ по красному смещению. На графиках можно выделить области повышенной и пониженной плотности. В Табл. 2 показаны области повышенной и пониженной плотности, а также их размеры в радиальном направлении Δr , детектированные на уровне $\pm \sigma_p$ в случае радиального распределения $\Delta z = 0.3$, где $\sigma_{corr} = |\sigma_{obs} - \sigma_p|$. Отметим, что малое число галактик в интервале z > 3.5 не позволяет утверждать, что там наблюдается область повышенной концентрации галактик. Значение порога обнаружения может быть выбрано различным, у нас оно выбрано $\pm \sigma_p$, так как это характерная величина для пуассоновского распределения.

5. ЗАКЛЮЧЕНИЕ

Целью работы являлось изучение возможности осуществления метода "космической томографии" на БТА для получения наблюдательных ограничений на существование сверхбольших структур. Этот метод позволяет изучать структуры на масштабах в гигапарсеки на основе наблюденных распределений фотометрических красных смещений слабых галактик в глубоких полях в соседних направлениях на небесной сфере.

В качестве первого шага в настоящей работе исследовано глубокое поле размером $4' \times 4'$ вокруг родительской галактики гамма-всплеска GRB 021004, полученное в наблюдениях на телескопе БТА с прибором SCORPIO в BVR_cI_c -фильтрах.

Составлен каталог галактик, обнаруженных в поле: 183 объекта с отношением сигнал/шум больше 3 в каждом фильтре и с предельными звездными величинами 26.0 (*B*), 25.5 (*V*), 25.0 (R_c), 24.5 (I_c), что позволило определить фотометрические красные смещения галактик поля до $z \approx 4$ с вероятностью 0.9. При этом использовался закон экстинкции — Seaton (*MW*).

Ранее в работе [1] на примере 100 гаммавсплесков с известными красными смещениями было показано, что радиальное распределение

Рис. 4. Интегральные подсчеты галактик в четырех фильтрах.

Таблица 2. Области повышенной (ODR) и пониженной (UDR) плотности, согласно данным радиального распределения галактик поля GRB 021004 для бинов $\Delta z = 0.3$

z_{start}	z_{finish}	Δz	Δr	σ_{corr}	Name
0.45	0.76	0.31	922	0.64	GRB021004_ODR_1
0.86	1.71	0.85	1721	0.16	GRB021004_UDR_1
2.07	3.14	1.07	1166	1.51	GRB021004_ODR_2

гамма-всплесков согласуется с радиальными распределениями галактик в имеющихся на сегодня других глубоких полях. Анализ глубокого поля гамма-всплеска GRB 021004, проведенный в настоящей работе, показывает, что выделение слабых галактик и построение радиальных распределений в глубоких полях гамма-всплесков, доступных на БТА, может быть использовано в задаче изучения крупномасштабной структуры Вселенной на хаббловских масштабах. При отсутствии систематических эффектов в методике определения фотометрических красных смещений можно предположить, что в радиальном направлении возможны структуры с масштабами в гигапарсеки и контрастом 50%. Для оценки размеров и контраста сверхбольших структур в тангенциальном направлении нужны аналогичные ииследования глубоких полей в соседних направлениях на гаммавсплески, а также проведение моделирования эффектов селекции, которые потенциально могут искажать наблюдаемое радиальное распределение далеких галактик.

Рис. 5. Диаграммы "звездная величина - красное смещение" для обнаруженных объектов.

Рис. 6. Радиальное распределение галактик для бинов $\Delta z = 0.2$ (слева) и $\Delta z = 0.3$ (справа).

Рис. 7. Наблюдаемые отклонения σ_{obs} и пуассоновский шум σ_p (пунктирные линии) и $3\sigma_p$ (штриховые линии) для бинов $\Delta z = 0.2$ (слева) и $\Delta z = 0.3$ (справа).

БЛАГОДАРНОСТИ

Авторы выражают благодарность В. Н. Комаровой за методическую помощь в обработке полученных на БТА данных, А. А. Васильеву за полезные обсуждения и советы, а также анонимному рецензенту за сделанные замечания, которые помогли существенно улучшить изложение материала. Эта работа была поддержана грантом РНП 2.1.1.3483 Федерального агенства образования РФ и грантом МК-405.2010.2 Президента Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- N. V. Nabokov and Yu. V. Baryshev, in *Proceedings* of the International Conference "Problems of Practical Cosmology", S-Peterburg, Russia, 2008 (Rus. Geograph. Society, S-Peterburg, 2008), V. 2, p. 69.
- 2. Н. В. Набоков и Ю. В. Барышев, *Астрофизика* **53**, 105 (2010).
- Н. В. Набоков и Ю. В. Барышев, Астрофизика 53, 117 (2010).
- V. V. Sokolov, S. V. Zharikov, Yu. V. Baryshev, et al., Astronom. and Astrophys. 344, 43 (1999).
- 5. Т. А. Фатхуллин, А. А. Васильев и В. П. Решетников, Письма в АЖ **30**, 323 (2004).
- 6. A. S. Moskvitin, E. Sonbas, I. V. Sokolov, and T. A. Fatkhullin, in *Proceedings of the International*

Conference "Problems of Practical Cosmology", S-Peterburg, Russia, 2008 (Rus. Geograph. Society, S-Peterburg, 2008), V. 2, p. 228.

- Т. А. Фатхуллин, Диссертация на соискание научной степени кандидата физ.-мат.наук (САО РАН, Нижний Архыз, 2003).
- 8. V. V. Sokolov, T. A. Fatkhullin, V. N. Komarova, and A. V. Moiseev, GCN 1717 (2002).
- 9. D. W. Fox, GCN 1564 (2002).
- 10. "SCORPIO: Spectral Camera with Optical Reducer for Photometrical and Interferometrical Observations" http://www.sao.ru/moisav/scorpio/ /scorpio.html.
- 11. M. S. Bessell, Publ. Astronom. Soc. Pacific 102, 1181 (1990).
- 12. "USNO Flagstaff station: Integrated Image and Catalogue Archive Service" http://www.nofs.navy.mil/data/FchPix/.
- 13. E. Bertin and S. Arnouts, Astronom. and Astrophys. Suppl. Ser. **117**, 393 (1996).
- 14. R. G. Kron, Astrophys. J. Suppl. 43, 305 (1980).
- 15. С. И. Неизвестный, *Известия САО* **17**, 26 (1983).
- 16. Arne A. Henden, GCN 1583 (2002).
- 17. M. Bolzonella, J.-M. Miralles, and R. Pelló, Astronom. and Astrophys. **363**, 476-492 (2000).
- 18. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. **500**, 525 (1998).

STUDY OF FAINT GALAXIES IN THE FIELD OF GAMMA-RAY BURST GRB 021004

Yu.V. Baryshev, I.V. Sokolov, A.S. Moskvitin, T.A. Fatkhullin, N.V. Nabokov, Brajesh Kumar

We present an analysis of BVR_cI_c observations of the field scaled around $4' \times 4'$ centered at the host galaxy of the GRB 021004 with the 6-m BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We measured the magnitudes and built color diagrams for 311 galaxies detected in the field (S/N> 3). The differential and integral counts of galaxies up to the limit, corresponding to 28.5 (*B*), 28.0 (*V*), 27.0 (R_c), 26.5 (I_c) were performed. We compiled the galaxy catalog, consisting of 183 objects, for which the photometric redshifts up to the limiting magnitudes: 26.0 (*B*), 25.5 (*V*), 25.0 (R_c), 24.5 (I_c) were determined with the HyperZ code. We then examined the radial distribution of galaxies from the *z* estimates. We compute the curves, anticipated in the case of a uniform distribution of galaxies in space, and obtain an estimate of the size and contrast of the possible super-large-scale structures, accessible for the observations of this type.

Key words: gamma-ray burst: individual