УДК 520.27:520.8

РАСЧЕТ ПОЛЯРИЗАЦИОННЫХ ХАРАКТЕРИСТИК РАТАН-600 В РЕЖИМЕ "ЮЖНЫЙ СЕКТОР С ПЛОСКИМ ОТРАЖАТЕЛЕМ" С УЧЕТОМ ДИФРАКЦИОННЫХ ЭФФЕКТОВ

© 2011 Е. К. Майорова, Л. В. Опейкина

Специальная астрофизическая обсерватория, Нижний Архыз, 369167 Россия Поступила в редакцию 5 мая 2010 г.; принята в печать 27 октября 2010 г.

В работе приведены результаты расчета элементов матрицы Мюллера радиотелескопа РАТАН-600 с учетом дифракционных эффектов в пространстве между вторичным, главным и плоским зеркалами в режиме наблюдений Южного сектора с плоским отражателем ("Юг+плоский") и в режиме наблюдений с одним сектором при установке антенны на горизонт во всем рабочем диапазоне длин волн. Показано, что с увеличением длины волны происходит сужение вертикальных размеров элементов M_{41} и M_{32} , смещение элементов относительно центрального горизонтального сечения, а также изменение их лепестковой структуры. Эти изменения, обусловленные дифракционными эффектами, в режиме "Юг+плоский" начинают проявляться на более коротких волнах, чем в режиме работы с одним сектором. Исследовано, как будет меняться структура элементов M_{41} и M_{32} при изменении угла наклона плоского отражателя, а также при продольных и поперечных выносах первичного облучателя из фокуса.

Ключевые слова: Методы астрономических наблюдений, приборы и инструменты

1. ВВЕДЕНИЕ

Радиотелескоп РАТАН-600 [1], как и любой другой телескоп, осуществляет прием поляризованного космического излучения. Ввиду того, что измеряемая поляризация зачастую оказывается существенно меньше полной интенсивности принимаемого излучения и, к тому же, может быть искажена паразитными поляризационными эффектами антенны и аппаратурно-приемного комплекса, исследование поляризационных характеристик радиотелескопа является весьма важной задачей.

Изучению поляризационных характеристик РАТАН-600 был посвящен целый ряд работ [2–10]. В основном это теоретические работы, в которых рассчитывались элементы матрицы Мюллера, связывающие параметры Стокса принимаемого космического радиоизлучения на входе и выходе антенной системы.

Экспериментально исследовались инструментальные паразитные эффекты при измерении линейной поляризации на длине волны 13 см, возникающие из-за несовершенства облучателя, поляриметра и конструктивных особенностей зеркал радиотелескопа [9, 10].

Отметим, что исследования паразитной поляризации антенн переменного профиля, к которым принадлежит РАТАН-600, были начаты еще на Большом пулковском радиотелескопе (БПР) [11]. В работах [2, 12–15] изучалась природа паразитных эффектов, предлагались методы их коррекции, как с использованием специальных приспособлений, так и с помощью вычитания паразитного сигнала при обработке наблюдений.

Матричный подход для расчета поляризационных характеристик был предложен в работе [16]. Авторами были получены выражения для элементов матрицы Мюллера в общем виде, которые использовались в дальнейшем для расчета поляризационных характеристик БПР [3] и РАТАН-600 [4–6, 8].

Опираясь на работы [5, 6, 9] можно показать, что для антенн переменного профиля в случае использования первичных облучателей, у которых диаграммы направленности (ДН) в Е- и Нплоскостях одинаковы, отличными от нуля оказываются диагональные элементы матрицы Мюллера ($M_{11}, M_{22}, M_{33}, M_{44}$), а также элементы, характеризующие переход друг в друга параметров Стокса I и V (M_{14}, M_{41}) и Q и U (M_{23}, M_{32}). При этом ненулевые элементы связаны между собой соотношениями:

$$M_{11} = M_{44}, \quad M_{22} = M_{33}, \\ M_{14} = M_{41}, \quad M_{23} = -M_{32}.$$
(1)

Элемент M_{11} матрицы Мюллера является диаграммой направленности по мощности для неполяризованного источника радиоизлучения, элемент M_{22} — диаграммой направленности для линейно поляризованного источника со стопроцентной поляризацией. Элемент M_{41} определяет диаграмму паразитной круговой поляризации, возникающей при наблюдении неполяризованного источника, элемент M_{32} характеризует изменение позиционного угла линейно поляризованного излучения [6].

Поляризационные характеристики РАТАН-600 зависят от режима наблюдений. В настоящее время наблюдения космических источников проходят в основном в двух режимах: это режим работы радиотелескопа с одним из секторов кругового отражателя (Северным или Южным) [1] и режим наблюдений Южного сектора с плоским перископическим отражателем ("Юг+плоский") [17].

Наиболее полно поляризационные характеристики радиотелескопа были исследованы для режима работы с одним сектором. Расчеты элементов матрицы Мюллера выполнялись как в приближении геометрической оптики [4-6], так и в приближении дифракции Френеля с учетом конечных вертикальных размеров элементов главного зеркала [8].

Поляризационные характеристики РАТАН-600 в режиме "Южный сектор с плоским отражателем" рассматривались в работах [5, 7]. При этом использовалось приближение геометрической оптики. В работе [5] основное внимание было уделено поляризационным характеристикам вторичного зеркала радиотелескопа, в работе [7] приведены результаты расчетов элемента матрицы M_{32} на длине волны $\lambda = 4$ см.

Однако полной картины поведения поляризационных характеристик радиотелескопа в режиме "Юг+плоский" на сегодняшний день нет. Учитывая тот факт, что в этом режиме работы плоское зеркало радиотелескопа находится в зоне Френеля вторичного зеркала практически во всем рабочем диапазоне длин волн (4 см $\leq \lambda < 50$ см)[18], расчеты элементов матрицы Мюллера должны проводиться в приближении дифракции Френеля с учетом конечных вертикальных размеров главного и плоского зеркал. Проведению таких расчетов и посвящена настоящая работа.

2. ПОЛЯРИЗАЦИОННЫЕ ХАРАКТЕРИСТИКИ РАДИОТЕЛЕСКОПА РАТАН-600

Результаты расчета элемента M_{11} в режиме "Юг+плоский" с учетом дифракционных эффектов представлены в работе [18]. Здесь мы остановимся на расчетах элементов M_{41} и M_{32} . Основным условием, при котором проводится расчет этих элементов, является равенство диаграмм направленности первичных облучателей в Е- и Н-плоскостях.

Выражения для M_{41} и M_{32} , полученные в работе [16], имеют вид:

$$M_{41} = \left[(f_{xx}^* f_{xy} - f_{xx} f_{xy}^*) + (f_{yx}^* f_{yy} - f_{yx} f_{yy}^*) \right] / 2, \quad (2)$$

$$M_{32} = \left[(f_{xx}^* f_{xy} + f_{xx} f_{xy}^*) - (f_{yx}^* f_{yy} + f_{yx} f_{yy}^*) \right] / 2, \quad (3)$$

где f_{xx} и f_{xy} — диаграммы направленности (ДН) для основной и кросс-поляризаций при вертикальной поляризации поля облучателя, f_{yy} и f_{yx} — ДН для основной и кросс-поляризаций при горизонтальной поляризации поля облучателя.

Для несимметричных антенн типа антенн переменного профиля в случае равенства диаграмм направленности первичных облучателей в Е- и Н-плоскостях выполняются следующие соотношения [5, 6, 16]: $f_{xx} = f_{yy}$, $f_{xy} = -f_{yx}$, что упрощает расчет элементов матрицы Мюллера.

Расчет диаграмм направленности для основной и кросс-поляризаций осуществлялся по формулам из [18]:

$$f_{xx}(\theta,\psi) = \frac{1}{f_{xx}(0,0)}$$

$$\times \int_{-\varepsilon_0}^{\varepsilon_0} \int_{-u_0}^{u_0} (F_{xx}(\varepsilon,u)e^{j\phi_{xx}(\varepsilon,u)}\cos\varepsilon) \quad (4)$$

$$-F_{xy}(\varepsilon,u)e^{j\phi_{xy}(\varepsilon,u)}\sin\varepsilon)e^{j\Phi(\varepsilon,u,\theta,\psi)}dud\varepsilon,$$

$$f_{xy}(\theta, \psi) = \frac{1}{f_{xx}(0,0)}$$

$$\times \int_{-\varepsilon_0}^{\varepsilon_0} \int_{-u_0}^{u_0} (F_{xx}(\varepsilon, u)e^{j\phi_{xx}(\varepsilon, u)}\sin\varepsilon)$$

$$+ F_{xy}(\varepsilon, u)e^{j\phi_{xy}(\varepsilon, u)}\cos\varepsilon)e^{j\Phi(\varepsilon, u, \theta, \psi)}dud\varepsilon.$$
(5)

Здесь F_{xx} — амплитуда основной и F_{xy} — кросссоставляющей электрического поля в апертуре антенны; ϕ_{xx} — фаза основной и ϕ_{xy} — кросссоставляющей электрического поля в апертуре, θ , ψ — угловые сферические координаты точки наблюдения, u, ε — полярные координаты в апертуре антенны.

В полярных координатах (u, ε) апертура антенны представляет собой часть кольца шириной $2u_0$ и угловым размером $2\varepsilon_0$. $2u_0 = h\cos(H/2)$, где H — угол места наблюдаемого источника, h — вертикальный размер отражающих элементов зеркал: $h = h_c = 11$ м — главного зеркала, $h = h_p = 8.5$ м — плоского отражателя. $2\varepsilon_0$ определяется количеством выставленных щитов и характером облучения главного зеркала.

Рис. 1. Изофоты элемента M_{41} при наблюдениях в режиме "Юг+плоский", рассчитанные для высоты $H = 50^{\circ}$ и длин волн: (a) — 2 см, (b) — 4 см, (c) — 8 см, (d) — 16 см, (e) — 32 см, (f) — 48 см. Изофоты проведены с шагом ±0.006, начиная с уровней ±0.003.

Рис. 2. То же, что на Рис. 1, для режима наблюдений с одним сектором на горизонте.

Рис. 3. Изофоты элемента M_{32} при наблюдениях в режиме "Юг+плоский", рассчитанные для высоты $H = 50^{\circ}$ и длин волн: (a) — 2 см, (b) — 4 см, (c) — 8 см, (d) — 16 см, (e) — 32 см, (f) — 48 см. Изофоты проведены с шагом ±0.01, начиная с уровней ±0.005 (a–d), и с шагом ±0.004 (начальные уровни ±0.002) (e–f).

Рис. 4. То же, что на Рис. 3, для режима наблюдений с одним сектором на горизонте. Изофоты проведены с шагом ±0.01, начиная с уровней ±0.005.

Рис. 5. Зависимости M_{41}^{max} и M_{32}^{max} от λ в режиме "Юг+плоский" (а) и в режиме наблюдений с одним сектором на горизонте (b). Кривыми 1 показаны $M_{41}^{max}(\lambda)$, кривыми 2 и 3 — $M_{32}^{max}(\lambda)$ и $M_{32}^{min}(\lambda)$ в нижней полуплоскости, кривыми 4 и 5 — $M_{32}^{max}(\lambda)$ и $M_{32}^{min}(\lambda)$ в верхней полуплоскости. Нормировка осуществлялась к максимальным значениям диаграммы направленности в интенсивности (M_{11}^{max}).

Фаза $\Phi(\varepsilon, u, \theta, \psi)$ вычислялась по формуле, предложенной в работе [8] для расчетов ДН радиотелескопа в режиме работы с одним сектором.

Расчет ортогональных комплексных компонент электрического поля в вертикальном раскрыве плоского и главного зеркал будем проводить в приближении дифракции Френеля по формулам из работы [18]:

$$\hat{F}_{ij}(\varepsilon, u) = F_{ij}(\varepsilon, u)e^{j\phi_{ij}(\varepsilon, u)}$$
$$= \frac{1}{\sqrt{\lambda\rho_1(\varepsilon)}} \int_{-h_c/2}^{h_c/2} E_{ij}(\varepsilon, z)e^{\frac{-j\pi(u-z)^2}{\lambda\rho_1(\varepsilon)}} dz, \qquad (6)$$

$$E_{ij}(\varepsilon, z) = E_{ij}(\varepsilon, z)e^{j\nu_{ij}(\varepsilon, z)}$$
$$= \frac{1}{\sqrt{\lambda\rho_2(\varepsilon)}} \int_{-b/2}^{b/2} A_{ij}(\varepsilon, t)e^{\frac{-j\pi(z-t)^2}{\lambda\rho_2(\varepsilon)}} dt, \qquad (7)$$

где \hat{F}_{ij} и \hat{E}_{ij} — ортогональные комплексные компоненты электрического поля в раскрыве плоского и главного зеркал, соответственно, F_{ij} — амплитуды компонент основной (F_{xx}) и кросс-поляризаций (F_{xy}) электрического вектора в раскрыве плоского зеркала, E_{ij} — амплитуды компонент основной (E_{xx}) и кросс-поляризаций (E_{xy}) электрического вектора в раскрыве плоского вектора в раскрыве главного зеркала; $\phi_{ij}(\varepsilon, u)$ и $\nu_{ij}(\varepsilon, u)$ — фазы компонент электрического вектора в апертуре плоского и главного зеркал, A_{ij} — компоненты основной и кросс-поляризаций электрического вектора в раскрыве вторичного зеркала, b — вертикальный размер вторичного зеркала; $\rho_1(\varepsilon)$ — расстояние между плоскостями раскрывов главного зеркала и перископического отражателя,

 $\rho_2(\varepsilon)$ — расстояние от фокуса до раскрыва главного зеркала в горизонтальной плоскости, λ — длина волны.

Компоненты электрического вектора основной и кросс- поляризаций в раскрыве вторичного зеркала рассчитывались, исходя из диаграммы направленности первичного облучателя. В качестве первичных облучателей используются скалярные рупора, для которых выполняется равенство диаграмм в Е- и Н-плоскостях. Рупора располагаются на фокальной линии вторичного зеркала. Программа для расчета компонент A_{ij} написана А. Н. Коржавиным с использованием формул, полученных им в работе [5] в приближении геометрической оптики.

3. РЕЗУЛЬТАТЫ РАСЧЕТА ЭЛЕМЕНТОВ МАТРИЦЫ МЮЛЛЕРА M₄₁, M₃₂

Расчеты элементов матрицы Мюллера M_{41} и M_{32} проводились в приближении дифракции Френеля по формулам (2–7) для длин волн 2, 4, 8, 16, 32 и 48 см.

Напомним, что в режиме работы "Юг+плоский" отражающие элементы главного зеркала устанавливаются на горизонт (нулевой угол места) так, что его поверхность представляет собой параболический цилиндр с вертикальной образующей. Фокусировка главного зеркала в процессе наблюдений не меняется. Меняется угол наклона плоского отражателя относительно горизонта в соответствии с высотой наблюдаемого источника *H*.

Результаты расчетов элемента M_{41} в режиме "Юг+плоский" для высоты $H = 50^{\circ}$ представлены на Рис. 1: (а) — для волны 2 см, (b) — 4 см, (c) — 8 см, (d) — 16 см, (e) — 32 см, (f) — 48 см. Координаты X, Y связаны со сферическими координатами θ, ψ следующими соотношениями:

 $X = \sin \theta \sin \psi, \ Y = \sin \theta \cos \psi$.

Параллельно были проведены расчеты элементов M_{41} и M_{32} в режиме наблюдений с одним сектором при установке антенны на горизонт ($H = 0^{\circ}$).

Поскольку в приближении дифракции Френеля расчеты M_{41} и M_{32} при наблюдениях с одним сектором выполнялись ранее только для высот $H \ge 10^{\circ}$ [8], результаты расчета этих элементов при $H = 0^{\circ}$ представляют как самостоятельный интерес, так и могут быть использованы для сравнения их с поляризационными характеристиками РАТАН-600 в режиме "Юг+плоский".

Результаты расчетов элемента M_{41} в режиме наблюдений с Северным сектором представлены на Рис. 2.

Результаты расчетов элементов M_{32} в режиме "Юг+плоский" для высоты $H = 50^{\circ}$ представлены на Рис. 3, в режиме наблюдений с Северным сектором при установке антенны на горизонт — на Рис. 4: (а) — для длины волны 2 см, (b) — 4 см, (с) — 8 см, (d) — 16 см, (е) — 32 см, (f) — 48 см.

 M_{41} и M_{32} нормировались к максимальным значениям диаграммы направленности в интенсивности (M_{11}) на заданной длине волны.

Изофоты на Рис. 1 и 3 проведены с шагом ± 0.006 , начиная с уровней ± 0.003 , на Рис. 2а-2d и Рис. 4 — с шагом ± 0.01 (начальные уровни ± 0.005), на Рис. 2е-2f — с шагом ± 0.004 (начальные уровни ± 0.002).

Размеры площадок, на которых представлены элементы матрицы Мюллера, пропорциональны длинам волн, для которых проводились расчеты.

Основной эффект, который мы наблюдаем с увеличением длины волны — это уменьшение размеров элементов M_{41} и M_{32} в вертикальной плоскости. Если бы для всех длин волн выполнялось приближение геометрической оптики, размеры элементов на представленных площадках были бы одинаковы. Отметим, что уменьшение размеров M_{41} и M_{32} в режиме "Юг+плоский" происходит, начиная с более коротких волн, чем в режиме наблюдений с одним сектором на горизонте.

Как уже отмечалось в работе [18], это связано с наличием дифракционных эффектов в пространстве между плоским, главным и вторичным зеркалами. С увеличением длины волны плоское и главное зеркала оказываются в зоне Френеля вторичного зеркала. Происходит расширение электромагнитного пучка в вертикальной плоскости по мере перемещения от вторичного к главному, а затем к плоскому отражателю.

Распределения поля в вертикальном раскрыве этих зеркал по мере увеличения длины волны становится все более равномерным, что приводит к сужению в вертикальной плоскости диаграммы направленности и элементов матрицы Мюллера. Поскольку расстояние, проходимое волной от вторичного до плоского отражателя более чем в два раза превышает расстояние от вторичного до главного зеркала, сужение диаграммы направленности и элементов M_{41} и M_{32} в режиме "Юг+плоский" начинает проявляться на более коротких волнах.

Отметим, что элементы M_{41} и M_{32} имеют структуру антисимметричную¹ относительно оси X = 0. При этом для каждого фиксированного значения Y_c выполняются равенства [9]:

$$M_{41}(Y_c, X) = -M_{41}(Y_c, -X)$$
$$M_{32}(Y_c, X) = -M_{32}(Y_c, -X).$$

На коротких волнах ($\lambda \leq 2$ см), где выполняется приближение геометрической оптики, у элемента M_{32} наблюдается антисимметрия и относительно оси Y = 0.

Кроме уменьшения вертикальных размеров, изза влияния дифракционных эффектов с увеличением длины волны меняется лепестковая структура элементов M_{41} и M_{32} , а также их максимальные (минимальные) значения. Элемент M_{41} смещается в сторону отрицательных Y (в нижнюю полуплоскость), у элемента M_{32} нарушается антисимметрия относительно оси Y = 0.

Рассмотрим, как ведут себя максимальные (минимальные) значения M_{41} и M_{32} с изменением длины волны.

На Рис. 5а приведены зависимости M_{41}^{max} и M_{32}^{max} от λ , нормированные к M_{11}^{max} , в режиме "Юг+плоский"; на Рис. 5b показаны эти же зависимости в режиме наблюдений с одним сектором на горизонте.

Учитывая, что | M_{41}^{max} |=| M_{41}^{min} |, для элемента M_{41} приводятся лишь зависимости $M_{41}^{max}(\lambda)$ (кривые 1). Кривыми 2 и 3 показаны $M_{32}^{max}(\lambda)$ и $M_{32}^{min}(\lambda)$ в нижней полуплоскости, кривыми 4 и 5 — эти же зависимости в верхней полуплоскости. В каждой из полуплоскостей выполняется равенство: | M_{32}^{max} |=| M_{32}^{min} |.

Расчеты показывают, что изменения M_{41}^{max} с длиной волны составляют порядка $\pm 20\%$ относительно среднего значения в режиме "Юг+плоский" и $\pm 30\%$ — в режиме наблюдений с одним сектором на горизонте.

Изменения элемента M_{32} гораздо значительнее. В режиме "Юг+плоский" значение M_{32}^{max} на длине

¹Операция антисимметрии преобразует объект в симметрично-эквивалентное положение с одновременным изменением его знака.

волны 2 см почти в 50 раз превышает величину максимума на длине волны 48 см; в режиме наблюдений с одним сектором это соотношение на порядок меньше (в 4–5 раз в зависимости от полуплоскости). В режиме "Юг+плоский" вблизи длины волны 37 см происходит частичная деполяризация элемента M_{32} с последующим изменением знака.

Представленные на Рис. 6 изофоты элемента M_{32} на длинах волн 33 см (а), 34 см (b), 36 см (c), 37 см (d), 38 см (e) и 40 см (f) демонстрируют, как меняется элемент M_{32} в этом диапазоне длин волн. Изофоты на Рис. 6 а, 6 b, 6 е и 6 f проведены с шагом $\pm 4 \times 10^{-4}$ (начальные уровни $\pm 2 \times 10^{-4}$), на Рис. 6 с и 6 d) — с шагом $\pm 2 \times 10^{-4}$ (начальные уровни $\pm 10^{-4}$). Величины M_{32} нормированы к M_{11}^{max} .

В рассматриваемом диапазоне длин волн происходит существенное снижение величин $\mid M_{32}^{max} \mid (\mid M_{32}^{min} \mid)$, вплоть до уровней 1.1×10^{-4} (0.8×10^{-4}) на длине волны 36 см. Кроме того, очень сильно меняется лепестковая структура. На длинах волн 36—37 см происходит разбиение структур в нижней полуплоскости (как положительной, так и отрицательной) на две одного знака, между которыми затем появляется структура противоположного знака.

Такие изменения связаны с изменением фазового распределения поля в вертикальном раскрыве плоского отражателя, когда плоское зеркало оказывается в зоне Френеля вторичного зеркала. Фазовые распределения поля в раскрывах главного и плоского зеркал на разных длинах волн приведены в работе [18].

Кроме изменения абсолютных величин элементов M_{41} и M_{32} с ростом длины волны происходит смещение их в вертикальной плоскости, в частности, меняется положение максимумов (минимумов) M_{41} и M_{32} относительно горизонтального сечения Y = 0.

На Рис. 7 приведены зависимости ΔY_{32}^{down} и ΔY_{32}^{up} от длины волны, которые характеризуют величину смещений максимумов (минимумов) элемента M_{32} от центрального горизонтального сечения, соответственно, в нижней и верхней полуплоскостях. Кривыми 1 и 3 показаны зависимости в режиме "Юг+плоский", кривыми 2 и 4 — в режиме наблюдений с одним сектором на горизонте.

Как уже отмечалось, структура элемента M_{32} такова, что его максимумы (минимумы) располагаются на некотором расстоянии от центрального горизонтального сечения. Причем на коротких длинах волн (там, где выполняется приближение геометрической оптики) расстояние от максимума (минимума) в верхней полуплоскости до оси Y = 0 по абсолютной величине практически равно расстоянию от максимума (минимума) в нижней полуплоскости до этой оси.

С ростом длины волны величины смещений максимумов в абсолютных единицах (в угл. минутах) как в верхней, так и в нижней полуплоскостях монотонно возрастают, достигая на длине волны 48 см значений порядка $\pm 1.5^{\circ}$ (Рис. 7).

Такое поведение зависимостей $\Delta Y_{32}(\lambda)$ связано с увеличением размеров элемента M_{32} . Причем характер этих изменений близок к характеру изменения полуширины вертикальной ДН в интенсивности, что видно из Рис. 8. На нем кривыми 2 и 3 показаны зависимости ΔY_{32}^{sum} от λ в режиме "Юг+плоский" и в режиме наблюдений с одним сектором соответственно.

$$\Delta Y_{32}^{sum} = |\Delta Y_{32}^{down}| + |\Delta Y_{32}^{up}|.$$

Кривой 1 на том же рисунке показана зависимость полуширины вертикальной ДН $HPBW_V$ от λ в режиме "Юг+плоский".

Если бы вертикальные размеры элементов M_{11} , M_{32} увеличивались, подчиняясь законам геометрической оптики, зависимости $HPBW_V(\lambda)$ и $\Delta Y^{sum}_{32}(\lambda)$ соответствовали бы пунктирной линии на Рис. 8, то есть росли пропорционально длине волны. Влияние дифракционных эффектов замедляет этот рост.

Обращает внимание близость кривых 1 и 2 на Рис. 8, которыми представлены зависимости $HPBW_V(\lambda)$ и $\Delta Y_{32}^{sum}(\lambda)$ в режиме "Юг+плоский". Эти кривые гораздо раньше, чем кривая 3, отходят от пунктирной линии, что подтверждает тот факт, что дифракционные эффекты в режиме "Юг+плоский" начинают проявляться на более коротких длинах волн, чем при работе с одним сектором.

Кроме изменения размеров элемента M_{32} в вертикальной плоскости с увеличением длины волны происходит смещение его относительно оси Y = 0. В качестве критерия этого смещения рассмотрим величину ΔY_{32}^{avr} :

$$\Delta Y_{32}^{avr} = (\Delta Y_{32}^{up} + \Delta Y_{32}^{down})/2.$$

Параметр ΔY_{32}^{avr} характеризует расстояние от оси Y = 0 до некоторой оси Y', равноудаленной от максимумов элемента M_{32} в верхней и нижней полуплоскостях. Строго говоря, ось Y' не является новой осью антисимметрии, поскольку с увеличением длины волны антисимметрия элемента M_{32} нарушается. Однако с помощью оценки величины ΔY_{32}^{avr} можно оценить смещение элемента M_{32} как целостной структуры относительно Y = 0 с изменением λ .

На Рис. 9 кривыми 1 и 2 показаны зависимости ΔY_{41} от длины волны, соответственно, в режиме "Юг+плоский" и в режиме наблюдений с одним

Рис. 6. Изофоты элемента M_{32} на длинах волн 33 см (а), 34 см (b), 36 см (c), 37 см (d), 38 см (e) и 40 см (f). На панелях (a, b, e, f) изофоты проведены с шагом $\pm 4 \times 10^{-4}$ (начальные уровни $\pm 2 \times 10^{-4}$), на панелях (c, d) — с шагом $\pm 2 \times 10^{-4}$ (начальные уровни $\pm 10^{-4}$). Величины M_{32} нормированы к M_{11}^{max} .

Рис. 7. Зависимости ΔY_{32}^{down} и ΔY_{32}^{up} от длины волны, характеризующие величину смещений максимумов (минимумов) элемента M_{32} от центрального горизонтального сечения, соответственно, в нижней и верхней полуплоскостях. Кривыми 1 и 3 показаны зависимости в режиме "Юг+плоский", кривыми 2, 4 — в режиме наблюдений с одним сектором на горизонте.

Рис. 8. Зависимости ΔY^{sum}_{32} от λ в режиме "Юг+плоский" (кривая 2) и в режиме наблюдений с одним сектором на горизонте (кривая 3). Кривая 1 — зависимость полуширины вертикальной ДН $HPBW_V(\lambda)$ в режиме "Юг+плоский". Пунктирной линией показано поведение этих зависимостей в приближении геометрической оптики.

сектором на горизонте. На этом же рисунке кривыми 3 и 4 представлены зависимости $\Delta Y_{32}^{avr}(\lambda)$, построенные для тех же режимов работы радиотелескопа.

Параметр ΔY_{41} характеризует величину смещения максимума (минимума) элемента M_{41} относительно центрального горизонтального сечения. Он дает представление о смещении элемента M_{41} как целостной структуры.

Из графиков, приведенных на Рис. 9, видно, что в обоих режимах работы радиотелескопа максимумы (минимумы) элемента M_{41} смещаются с увели-

Рис. 9. Зависимости ΔY_{41} (кривые 1, 2) и ΔY_{32}^{avr} (кривые 3, 4) от длины волны. Кривые 1 и 3 соответствуют режиму "Юг+плоский", кривые 2 и 4 — режиму наблюдений с одним сектором на горизонте.

чением длины волны главным образом в сторону отрицательных значений Y. Эти смещения могут достигать 40% от полуширины вертикальной ДН в режиме "Юг+плоский" и 30% в режиме наблюдений с одним сектором. Исключение составляет диапазон 4 см $< \lambda < 16$ см в режиме работы с одним сектором, где смещения элемента M_{41} происходят в область положительных Y. Однако эти смещения невелики и составляют не более 10% от $HPBW_V$.

Смещения элемента M_{32} по абсолютной величине намного меньше величины смещений элемента M_{41} и не превышают 11% от $HPBV_V$ в режиме "Юг+плоский" и 5% в режиме наблюдений с одним сектором. В диапазоне 10 см < λ < 43 см в режиме Юг+плоский" элемент M_{32} смещен преимущественно в область положительных Y, в режиме работы с одним сектором — в область отрицательных Y. Диаметрально противоположные смещения наблюдаются на длинах волн λ > 43 см.

4. ЭЛЕМЕНТЫ M_{41} И M_{32} В РЕЖИМЕ "ЮГ+ПЛОСКИЙ" ПРИ НАБЛЮДЕНИЯХ ИСТОЧНИКОВ В ДИАПАЗОНЕ ВЫСОТ $0^\circ < H \le 100^\circ$

Рассмотрим, как меняются элементы матрицы M_{41} и M_{32} при изменении высоты наблюдаемого источника. Как уже отмечалось, при наблюдениях источников с разными склонениями меняется угол наклона плоского отражателя относительно горизонта.

На Рис. 10 представлены элементы M_{41} (слева) и M_{32} (справа), рассчитанные для высот: $H = 0^{\circ}$, $H = 50^{\circ}$, $H = 80^{\circ}$ и $H = 100^{\circ}$ (сверху вниз) на длине волны 8 см. Изофоты M_{41} проведены с

Рис. 10. Изофоты элементов M_{41} (слева) и M_{32} (справа), рассчитанные для высот: $H = 0^{\circ}$, $H = 50^{\circ}$, $H = 80^{\circ}$ и $H = 100^{\circ}$ (сверху вниз) на длине волны 8 см в режиме "Юг+плоский". Изофоты M_{41} проведены с шагом ±0.006 (начальные уровни ±0.003), изофоты M_{32} — с шагом ±0.01 (начальные уровни ±0.005).

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 66 № 2 2011

Рис. 11. Зависимости M_{41}^{max} (а) и M_{32}^{max} от высоты наблюдаемого источника H для нижней (b) и верхней (c) полуплоскостей в режиме "Юг+плоский". Нормировка осуществлялась на величины максимумов элементов M_{41} и M_{32} при $H = 0^{\circ}$. Расчеты проводились на волнах: 2 см (кривые 1), 4 см (кривые 2), 8 см (кривые 3), 16 см (кривые 4), 32 см (кривые 5) и 48 см (кривые 6).

шагом ± 0.006 (начальные уровни ± 0.003), изофоты M_{32} — с шагом ± 0.01 (начальные уровни ± 0.005).

Как и предполагалось, с изменением угла наклона плоского отражателя вид элементов M_{41} и M_{32} не остается постоянным. Из-за уменьшения эффективного вертикального размера плоского отражателя с высотой, $h_{eff} \sim h_p \cos(H/2)$, размеры элементов в вертикальной плоскости увеличиваются, что мы и видим на Рис. 10. Кроме того, происходят количественные изменения M_{41}^{max} и M_{32}^{max} .

Чтобы оценить, насколько существенны эти изменения, были построены зависимости максимальных значений элементов и их смещений в вертикальной плоскости от высоты наблюдаемого источника H. Зависимости $M_{41}^{max}(H)$ показаны на Рис. 11 а, $M_{32}^{max}(H)$ — на Рис. 11 b (для нижней полуплоскости) и Рис. 11 с (для верхней полуплоскости). На графиках приведены относительные значения M_{41}^{max} и M_{32}^{max} , которые нормировались на величины максимумов элементов при $H = 0^{\circ}$. Расчеты проводились на длинах волн: 2 см (кривые 1), 4 см (кривые 2), 8 см (кривые 3), 16 см (кривые 4), 32 см (кривые 5) и 48 см (кривые 6).

Зависимости $\Delta Y_{41}(H)$ и $\Delta Y_{32}^{avr}(H)$, рассчитанные для тех же длин волн, представлены на Рис. 12 а и 12 b соответственно.

Из графиков, приведенных на Рис. 11 и 12, видно, что изменения максимальных значений элементов M_{41} и M_{32} , а также смещений их относительно оси Y = 0 в диапазоне углов $H = 0^{\circ}-20^{\circ}$ очень незначительны (менее 5%). Наиболее существенные изменения начинаются на высотах $H > 50^{\circ}$.

Значения M_{41}^{max} и M_{32}^{max} преимущественно уменьшаются с увеличением высоты. Исключение составляет поведение M_{41}^{max} на длинах волн 4 см и 8 см. Изменения M_{41}^{max} максимальны на длинах волн 8 см и 16 см. Однако их величина не превышает 20%. Изменения M_{32}^{max} максимальны в диапазоне 8 см $\leq \lambda \leq 32$ см (до 80% в верхней и 45% — в нижней полуплоскости).

С ростом H увеличиваются смещения элемента M_{41} в сторону отрицательных значений Y. Максимальные смещения M_{41} относительно его положения при $H = 0^{\circ}$ составляют: -4' на длине волны 2 см, -7.5' — на 4 см, -5.7' на 8 см, -2.0' — на 16 см, -13.3' — на 32 см и -14.0' — на 48 см.

Смещения элемента M_{32} как целостной структуры с изменением угла наклона плоского отражателя зависят от длины волны. На длинах волн 2, 4, 32 и 48 см смещения происходят в область отрицательных значений Y, на длинах волн 8 и 16 см положительных Y. Наибольших значений смещения M_{32} достигают на длинах волн 16 см (порядка 15') и 32 см (порядка –13'), наименьших — на 2 см и 4 см (-0.7'-(-0.5')). На длине волны 8 см изменения ΔY_{32}^{avr} составляют +4.1', на 48 см — -4.0'.

Однако в целом структура элементов M_{41} и M_{32} с изменением высоты наблюдаемого источника существенно не меняется.

Рис. 12. Зависимости $\Delta Y_{41}(H)$ (а) и $\Delta Y_{32}^{avr}(H)$ (b), рассчитанные в режиме "Юг+плоский" для тех же длин волн, что и на Рис. 11.

5. ЭЛЕМЕНТЫ *M*₄₁ И *M*₃₂ ПРИ ПРОДОЛЬНЫХ И ПОПЕРЕЧНЫХ ВЫНОСАХ ОБЛУЧАТЕЛЯ ИЗ ФОКУСА

В заключение рассмотрим, как будут меняться элементы M_{41} и M_{32} в режиме "Юг+плоский" при поперечных и продольных относительно фокальной оси выносах облучателя из фокуса.

В прямоугольной системе координат ось x направим перпендикулярно фокальной оси радиотелескопа, ось y — вдоль фокальной оси, начало координат поместим в фокусе антенны.

На Рис. 13 приведены элементы M_{41} (слева) и M_{32} (справа), рассчитанные для длины волны 2 см и высоты $H = 50^{\circ}$ в режиме "Юг+плоский" при поперечных выносах первичного облучателя из фокуса, равных: $\Delta x = 0$, $\Delta x = 2\lambda$, $\Delta x = 3\lambda$ и $\Delta x = 4\lambda$ (сверху вниз).

Изофоты элемента M_{41} проведены с шагом ±0.004 (начальные уровни ±0.002), элемента M_{32} — с шагом ±0.01 (начальные уровни ±0.005).

На Рис. 14 эти же элементы рассчитаны при продольных выносах облучателя из фокуса: $\Delta = 0$, $\Delta y = 0.5\lambda$, $\Delta y = 1.0\lambda$ и $\Delta y = 1.5\lambda$ (сверху вниз). Изофоты элемента M_{41} проведены с шагом ± 0.006 (начальные уровни ± 0.003), элемента M_{32} — с шагом ± 0.01 (начальные уровни ± 0.005).

При выносах облучателя из фокуса меняется лепестковая струкрура элементов M_{41} и M_{32} , а также их максимальные (минимальные) значения. Однако характер этих изменений при продольных и поперечных выносах отличается друг от друга.

При поперечных выносах облучателя появляются несимметричные боковые лепестки, количество и размеры которых возрастают с увеличением Δх. Лепестковая структура элемента M_{32} в каждой

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 66 № 2 2011

из полуплоскостей (верхней и нижней) приобретает вид, подобный лепестковой структуре элемента M_{11} при поперечных аберрациях [18].

Элемент M_{41} также становится несимметричным относительно X = 0 при $\Delta x \neq 0$, однако его лепестковая структура оказывается более сложной, чем у элементов M_{32} и M_{11} .

На Рис. 15 приведены аберрационные кривые элементов M_{41} , M_{32} и M_{11} при поперечных (слева) и продольных (справа) выносах облучателя из фокуса. Аберрационные кривые $(M_{ij}^{max}/M_{ij}^{max}(0) = f(\Delta x)$ и $M_{ij}^{max}/M_{ij}^{max}(0) = f(\Delta y))$ показывают, как меняются величины максимумов элементов матрицы Мюллера в зависимости от величины выноса облучателя из фокуса.

Кривой 1 на левой панели Рис. 15 показана аберрационная кривая элемента M_{41} , кривыми 2 и 3 — аберрационные кривые элемента M_{32} , соответственно, в нижней и верхней полуплоскостях, кривой 4 — аберрационная кривая элемента M_{11} .

Интересен тот факт, что элемент M_{32} не только повторяет лепестковую структуру элемента M_{11} при поперечных выносах, но и то, что аберрационные кривые этих элементов практически совпадают по величине.

При продольном выносе облучателя из фокуса поведение элемента M_{32} аналогично поведению элемента M_{11} с увеличением Δ у, а именно, происходит расширение его в горизонтальной плоскости и уменьшение по абсолютной величине.

Аберрационные кривые элемента M_{32} при продольном выносе (кривые 3 и 4 на правой панели Рис. 15) также близки к аберрационной кривой элемента M_{11} (кривая 5). Кривая 3 — аберрационная кривая элемента M_{32} в нижней полуплоскости, кривая 4 — в верхней полуплоскости.

Рис. 13. Изофоты элементов M_{41} (слева) и M_{32} (справа), рассчитанные для длины волны 2 см и высоты $H = 50^{\circ}$ в режиме "Юг+плоский" при поперечных выносах первичного облучателя из фокуса, равных: $\Delta x = 0$, $\Delta x = 2\lambda$, $\Delta x = 3\lambda$ и $\Delta x = 4\lambda$ (сверху вниз). Изофоты элемента M_{41} проведены с шагом ± 0.004 (начальные уровни ± 0.002), элемента M_{32} — с шагом ± 0.01 (начальные уровни ± 0.005).

Рис. 14. Изофоты элементов M_{41} (слева) и M_{32} (справа), рассчитанные для волны 2 см и высоты $H = 50^{\circ}$ в режиме "Юг+плоский" при продольных выносах первичного облучателя из фокуса: $\Delta = 0$, $\Delta y = 0.5\lambda$, $\Delta y = 1.0\lambda$ и $\Delta y = 1.5\lambda$ (сверху вниз). Изофоты элемента M_{41} проведены с шагом ± 0.006 (начальные уровни ± 0.003), элемента M_{32} — с шагом ± 0.01 (начальные уровни ± 0.005).

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 66 № 2 2011

Что касается элемента M_{41} , то с увеличением продольного выноса его структура в корне меняется. Каждый из двух антисимметричных относительно оси X = 0 главных лепестков разбивается на два. Структура M_{41} становится подобной структуре элемента M_{32} . Однако в отличие от элемента M_{32} , у элемента M_{41} с увеличением продольного выноса увеличиваются не только размеры, но может увеличиваться и абсолютная величина M_{41}^{max} (M_{41}^{min}). Это демонстрируют аберрационные кривые $M_{41}^{max}/M_{41}^{max}(0) = f(\Delta y)$ на правой панели Рис. 15 (кривая 1 — аберрационная кривая M_{41} в нижней, кривая 2 — в верхней полуплоскости).

Таким образом, при увеличении продольных аберраций, наряду с уменьшением максимума диа-граммы направленности в интенсивности, может возрасти составляющая паразитной круговой поляризации. Вынос облучателя из фокуса на $\Delta \sim \lambda$ приводит к увеличению ее на 30% при наблюдении точечного источника.

6. ЗАКЛЮЧЕНИЕ

Расчеты элементов матрицы Мюллера M_{41} и M_{32} с учетом дифракционных эффектов в диапазоне длин волн 2 см $\leq \lambda \leq 48$ см позволили более детально изучить поляризационные характеристики РАТАН-600. Расчеты проводились для режима работы Южного сектора с плоским отражателем, а также для режима наблюдений с одним сектором на горизонте.

 Показано, что из-за влияния дифракционных эффектов замедляется увеличение вертикальных размеров элементов матрицы Мюллера с ростом длины волны. Кроме того, происходит смещение элементов в вертикальной плоскости и изменение их лепестковой структуры.

В режиме "Юг+плоский" все изменения элементов M_{32} и M_{41} , вызванные дифракционными эффектами, начинаются на более коротких длинах волн, чем в режиме наблюдений с одним сектором на горизонте.

Смещение элемента M_{41} в обоих режимах работы радиотелескопа происходит главным образом в область отрицательных значений Y и может достигать 40% от полуширины вертикальной ДН в режиме "Юг+плоский" и 30% — в режиме наблюдений с одним сектором.

Смещения элемента M_{32} по абсолютной величине намного меньше: в режиме "Юг+плоский" они не превышают 11% от полуширины вертикальной ДН, в режиме наблюдений с одним сектором — 5%.

С увеличением длины волны происходят изменения максимальных (минимальных) значений элементов. Изменения M_{41}^{max} с длиной волны составляют порядка 20% относительно среднего значения в режиме "Юг+плоский" и 30% — в режиме наблюдениях с одним сектором на горизонте.

В режиме "Юг+плоский" существенно меняется лепестковая структура элемента M_{32} . Значения его уменьшаются по абсолютной величине с ростом λ и вблизи волны 37 см происходит частичная деполяризация этого элемента с последующим изменением знака. Абсолютные значения M_{32}^{max} (M_{32}^{min}) на длине волны 2 см в режиме "Юг+плоский" почти в 50 раз превышают величины | M_{32}^{max} | (| M_{32}^{min} |) на длине волны 48 см. В режиме наблюдений с одним сектором это соотношение на порядок меньше.

2) Расчеты показали, что с увеличением угла наклона плоского отражателя увеличиваются вертикальные размеры элементов M_{41} и M_{32} , меняется величина их максимумов и минимумов, а также положение элементов относительно центральной горизонтальной оси. Эти изменения наиболее существенны при $H > 50^\circ$, в диапазоне $0^\circ \le H < 20^\circ$ они не превышают 5%.

С увеличением угла наклона плоского отражателя (от 0 до 100°) изменения M_{32}^{max} относительно $M_{32}^{max}(0)$ могут достигать порядка 80% в нижней и 45% в верхней полуплоскостях, изменения M_{41}^{max} — менее 20%. Изменения элементов максимальны в диапазоне 8 см $\leq \lambda \leq 32$ см.

Смещения элемента M_{41} относительно его положения при $H = 0^{\circ}$ максимальны в диапазоне $32 \text{ см} \le \lambda \le 48 \text{ см}$ (порядка -14'); у элемента M_{32} — на длине волны 16 см (примерно 15') и 32 см (-13').

Однако в целом структура элементов M_{41} и M_{32} с изменением высоты наблюдаемого источника существенно не меняется.

3) Проведены расчеты элементов M_{41} и M_{32} при поперечных и продольных выносах облучателя из фокуса. Изменения лепестковой структуры элемента M_{32} в верхней и нижней полуплоскостях при продольных и поперечных выносах облучателя аналогичны изменениям элемента M_{11} при продольных и поперечных аберрациях. Кроме того, аберрационные кривые элемента M_{32} близки к аберрационным кривым M_{11} .

Что касается поведения элемента M_{41} , то при продольных выносах облучателя из фокуса его структура меняется существенным образом. Она становится подобной структуре элемента M_{32} и расширяется в горизонтальной плоскости.

Однако, в отличие от элемента M_{32} , максимальные значения элемента M_{41} с увеличением продольного выноса практически не уменьшаются, а в диапазоне $0.6\lambda < \Delta y < 1.5\lambda$ даже увеличиваются. Это приводит к тому, что при выносах облучателя из фокуса на расстояние порядка λ

Рис. 15. Аберрационные кривые элементов M_{41} , M_{32} и M_{11} при поперечных (слева) и продольных (справа) выносах облучателя из фокуса. На левой панели кривой I показана аберрационная кривая элемента M_{41} , кривыми 2 и 3 — аберрационные кривые элемента M_{32} , соответственно, в нижней и верхней полуплоскостях, кривой 4 — аберрационная кривая элемента M_{11} . На правой панели: кривые I и 2 — аберрационные кривые элемента M_{41} , соответственно, в нижней и верхней полуплоскостях, кривые 3 и 4 — аберрационные кривые элемента M_{32} в нижней и верхней полуплоскостях, кривая 5 — аберрационная кривая элемента M_{11} .

паразитная круговая поляризация при наблюдении точечного источника может увеличиться на 30% по сравнению с величиной паразитной поляризации сфокусированной антенны.

Таким образом, учет дифракционных эффектов существенно меняет наши представления о поведении элементов матрицы Мюллера с изменением длины волны, высоты наблюдаемого источника и характера расфокусировки антенны.

БЛАГОДАРНОСТИ

Работа выполнена при поддержке гранта РФФИ 09-07-00320a.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. Э. Хайкин, Н. Л. Кайдановский, Ю. Н. Парийский и Н. А. Есепкина, Изв. ГАО **188**, 3 (1972).
- 2. Н. А. Есепкина, Н. Л. Кайдановский, Б. Г. Кузнецов и др., Радиоэлектроника **6**, 1947 (1961).
- Н. С. Бахвалов, Л. Г. Васильева, Н. А. Есепкина и др., Астрофиз. исслед. (Изв. САО) 5, 135 (1973).
- 4. А. Н. Коржавин, Сообщ. САО **16**, 43 (1976).
- 5. А. Н. Коржавин, Астрофиз. исслед. (Изв. САО) 11, 170 (1979).

- Н. А. Есепкина, Н. С. Бахвалов, Б. А. Васильев и др., Астрофиз. исслед. (Изв. САО) 11, 182 (1979).
- Н. А. Есепкина, Н. С. Бахвалов, Б. А. Васильев и др., Астрофиз. исслед. (Изв. САО) 15, 151 (1982).
- 8. E. K. Majorova, Bull. Spec. Astrophys. Obs. **53**, 78 (2002).
- В. И. Абрамов, Диссертация на соискание ученой степени кандидата физико-математических наук (НИРФИ, Горький, 1984).
- 10. В. И. Абрамов и Е. Н. Виняйкин, Астрофиз. исслед. (Изв. САО) **19**, 93 (1985).
- 11. С. Э. Хайкин, Н. Л. Кайдановский, Н. А. Есепкина и О. Н. Шиврис, Изв. ГАО **164**, 3 (1960).
- 12. Г. В. Кузнецова и Н. С. Соболева, Изв. ГАО **172**, 122 (1964).
- 13. Г. В. Кузнецова, Изв. ГАО 182, 245 (1967).
- Н. А. Есепкина, В. Ю. Петрунькин, Н. С. Соболева и А. В. Рейнер, Изв. ВУЗов, Серия Радиофизика 14, 1149 (1971).
- Г. Б. Гельфрейх и Н. Г. Петерова, Астрон. ж. 47, 689 (1970).
- Н. А. Есепкина, Астрофиз. исслед. (Изв. САО) 4, 157 (1972).
- 17. О. Н. Шиврис, Астрофиз. исслед. (Изв. САО) **12**, 134 (1980).
- 18. E. K. Majorova, Astrophysical Bulletin 66, 90 (2011).

252

МАЙОРОВА, ОПЕЙКИНА

COMPUTATION OF THE POLARIZATION PROPERTIES OF RATAN-600 IN THE "SOUTHERN SECTOR WITH A FLAT REFLECTOR" MODE WITH THE DIFFRACTION EFFECTS CONSIDERED

E.K. Majorova, L.V. Opeikina

We report the Muller matrix elements for RATAN-600 computed with the allowance for the diffraction effects in the space between the primary and flat mirrors in the Souther sector with a flat reflector ("South+flat") observing mode and in the mode of single-sector observations at the horizon throughout the entire operating wavelength range. We show that the vertical size of the M_{41} and M_{32} elements decreases, the elements shift relative to the central horizontal section, and the lobe structure of the elements changes with increasing wavelength. In the "South+flat" mode these changes, which are due to diffraction effects, begin to show up at shorter wavelength compared to the single-sector mode. We investigated the variation of the structure of the elements M_{41} and M_{32} with the tilt angle of the flat reflector and in the case of longitudinal and transversal off-focus offsets of the primary feed.

Key words: *Techniques: radar astronomy*