УДК 524.74-32

БЛИЗКИЕ ГРУППЫ ГАЛАКТИК В СОЗВЕЗДИЯХ HERCULES-BOOTES

© 2017 И. Д. Караченцев^{1*}, О. Г. Кашибадзе¹, В. Е. Караченцева²

¹Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия ²Главная астрономическая обсерватория НАН Украины, Киев, 03143 Украина Поступила в редакцию 2 марта 2017 года; принята в печать 17 марта 2017 года

Мы рассматриваем выборку 412 галактик с лучевыми скоростями $V_{\rm LG} < 2500$ км с⁻¹, расположенных в области неба RA = $13^{\rm m}0-19^{\rm m}0$, Dec = $+10^{\circ}\dots+40^{\circ}$ между Местным войдом и сверхгалактической плоскостью. Индивидуальные оценки расстояний получены для 181 галактики из 412. Пекулярные скорости галактик как функция сверхгалактической широты SGB показывают признаки падения на центр скопления Virgo при SGB < 10° и движение от Местного войда при SGB > 60° . Половина галактик Hercules—Bootes входит в 17 групп (из которых наиболее населенная — это группа вокруг NGC 5353) и 29 пар. Типичная группа характеризуется дисперсией скоростей 67 км с⁻¹, гармоническим радиусом 182 кпк, звездной массой $4.3 \times 10^{10} M_{\odot}$ и отношением вириальной массы к звездной, равным 32. Двойные галактики имеют разность лучевых скоростей 37 км с⁻¹, проекционное расстояние 96 кпк, среднюю интегральную звездную массу $2.6 \times 10^9 M_{\odot}$ и среднее отношение вириальной массы к звездной около 8. Отношение темной материи к звездной массе в рассмотренной области неба достигает 37, т.е. почти такого же значения, что и в Местном объеме.

Ключевые слова: галактики: кинематика и динамика — галактики: расстояния и красные смещения — галактики: группы

1. ВВЕДЕНИЕ

Массовые измерения лучевых скоростей галактик в недавних оптических и радиообзорах неба SDSS [1], HIPASS [2-4], ALFALFA [5, 6] привели к значительному обогащению наших представлений о крупномасштабной структуре и движениях галактик в близкой вселенной. Основываясь на данных о примерно 10⁴ галактик с лучевыми скоростями относительно центроида Местной группы $V_{\rm LG} < 3500 \,$ км с⁻¹, Караченцев и Макаров [7–9] составили каталоги систем галактик разной кратности по всему небу общим числом около тысячи объектов. Для кластеризации галактик был применен новый алгоритм, который учитывал индивидуальные массы (светимости) галактик. С использованием взаимных расстояний, лучевых скоростей и светимостей галактик в К-полосе были определены вириальные и звездные массы систем галактик в объеме радиусом 48 Мпк, который охватывает все Местное сверхскопление и его ближайшие окрестности.

Одним из важных результатов этих исследований стала оценка средней плотности материи, заключенной в системах галактик $\Omega_m^{\rm vir} = 0.08 \pm 0.02$, которая оказалась в 3-4 раза меньше средней глобальной плотности материи $\Omega_m = 0.26 \pm 0.02$ [10]. Для объяснения этого несоответствия выдвигались различные предположения, перечисленные в [11]:

 а) группы и скопления окружены протяженными темными гало, и основная их темная масса локализована за пределами вириального радиуса системы;

b) рассматриваемый объем Местной вселенной не является репрезентативным, будучи расположенным в гигантском космическом войде;

с) большая часть темной материи во Вселенной заключена не в группах и скоплениях, а распределена между ними в диффузных крупномасштабных структурах (волокнах, сгустках).

Однако ни одно из этих предположений не получило пока убедительных наблюдательных подтверждений. Очевидно, что необходимо дальнейшее накопление данных о лучевых скоростях и расстояниях галактик, а также проверка того, насколько эффективно работал критерий объединения галактик в группы. Следуя этой идее, мы провели анализ наблюдательных данных о галактиках в пяти площадках с достаточно представительным числом объектов. Три из них расположены вдоль плоскости Местного сверхскопления к северу [12, 13] и

^{*}E-mail: ikar@sao.ru

Рис. 1. Распределение на небе галактик Местного сверхскопления в экваториальных координатах. Область Hercules— Bootes и пять других ранее изученных нами областей выделены темным цветом. Кольцеобразная клочковатая полоса обозначает зону сильного поглощения.

югу [14] от скопления Virgo. Две другие — область Bootes [15] и область Leo-Cancer [16] — охватывают зоны на высоких сверхгалактических широтах. Расположение исследованных площадок неба показано на карте рис. 1 в экваториальных координатах. Точками отмечены положения 5725 галактик с лучевыми скоростями $V_{\rm LG} < 3000$ км с⁻¹, клочковатая кольцеобразная полоса обозначает зону сильного поглощения в Млечном Пути. В дополнение к пяти прежним зонам (отмечены светло-серым тоном) мы рассматриваем здесь новую область, ограниченную координатами по RA от 13^h0 до 19^h0 и по Dec от $+10^{\circ}$ до $+40^{\circ}$. Поскольку относительное число галактик с оценками расстояния круто падает с ростом лучевой скорости галактик, мы ограничились рассмотрением только объектов со скоростями $V_{\rm LG} < 2500~{\rm km}\,{\rm c}^{-1}$, что соответствует несколько большему объему, чем для зон, исследованных ранее.

2. НАБЛЮДАТЕЛЬНЫЕ ДАННЫЕ

Рассматриваемая область частично перекрывается с зонами обзоров неба SDSS, HIPASS и ALFALFA. В качестве основного источника данных о галактиках мы использовали NASA Extragalactic Database (NED)¹ с дополнениями из HyperLEDA [17]. Каждый объект с оценкой лучевой скорости V_h осматривался визуально, при этом было отбраковано большое количество ложных «галактик» с лучевыми скоростями в окрестности нуля. Для многих галактик нами были уточнены морфологические типы и интегральные *B*-величины. При отсутствии фотометрических данных видимые величины ряда галактик, как правило, карликовых, были оценены при сравнении их с изображениями других объектов, имеющих сходную структуру и надежную фотометрию.

Всего в данной области неба находится 412 галактик с лучевыми скоростями $V_{\rm LG} \le 2500$ км с⁻¹. Список их представлен в таблице 1, полная версия которой доступна в электронном виде в базе данных Vizier². В столбцах таблицы содержатся: (1) имя галактики или ее номер в известных каталогах; (2) экваториальные координаты на эпоху (2000.0); (3) лучевая скорость (в км с⁻¹) относительно центроида Местной группы с параметрами апекса, принятыми в NED; (4) морфологический тип галактики по классификации de Vaucouleurs; (5) интегральная видимая величина галактики в B-полосе; (6) ширина радиолинии 21 см (в км с⁻¹), измеренная на уровне 50% от максимальной интенсивности; (7) модуль расстояния с учетом поправки за поглощение в Галактике [18] и внутреннее поглощение [19]; (8) метод, которым определен модуль расстояния; (9) имя ярчайшей галактики в группе/паре, к которой принадлежит данная галактика согласно [8, 9] или [7].

Рассматриваемая область неба содержит всего одну галактику с высокоточным измерением расстояния по цефеидам («сер»). Для четырех галактик ранних типов расстояния определены по

¹http://ned.ipac.caltech.edu

²http://cdsarc.u-strasbg.fr//viz-bin/qcat?J/ other/

КАРАЧЕНЦЕВ и др.

Name	RA (2000.0) Dec	$V_{\rm LG}$	Т	B_T	W_{50}	(m - M)	Method	Group
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
UGC 8085	125817.3 + 143325	1971	Scd	14.5	204	32.37	tf	N 4866
NGC 4866	125927.1+141016	1911	Sb	12.14	514	32.21	tf	N 4866
NGC 4880	130010.6+122900	1293	S0a	13.12				
AGC 233925	130015.7+292859	2482	dIr	18.08	90			
AGC 239030	130018.9 + 293305	970	dIr	18.7	40	31.57	bTF	
AGC 233574	130022.1 + 125525	1838	dIr	17.6	70	32.74	TF	N 4866
UGC 08114	130025.0+134013	1909	Sm	15.85	130	32.91	TF	N 4866
PGC 1876816	130242.8+294458	2520	dIm	18.30				
AGC 732482	130336.8+243132	816	Sm	16.2	97	32.15	TF	
AGC 233930 *	130402.7+281833	674	dIm	17.17	98			
KK 181	130433.8+264627	1916	dIr	16.88	86	32.74	TF	
KUG 1302+329	130439.4+324054	2372	BCD	16.6				
SDSSJ130440	130440.0+184439	766	BCD	17.73				
IC 4171	130518.8+360610	1026	Sdm	15.9	89	31.73	TF	
UGC 08181	130524.6+325400	900	Sdm	15.59	84	31.30	TF	
IC 4178	130541.5+360103	1215	dIm	16.53	64	31.48	TF	
N 4961	130547.6+274400	2525	Scd	13.7	216	33.00	tf	N 4961
IC 4182	130549.6+373618	357	Sm	12.00	35	28.36	cep	N 4736
BTS 165	130549.8 + 274240	2516	dIr	17.0				N4961
AGC 230077	130623.3+102600	841	dIm	15.66	46	30.79	TF	
KK 183	130642.5 + 180008	1496	dIr	17.90	75	31.98	bTF	
AGC 230084	130656.0 + 144826	915	dIm	16.39	49	30.40	TF	
PGC 2134801	130717.2+384321	2423	dIm	17.1				
AGC 239031	130812.3+290517	822	dIr	18.3	23	29.96	TF	
AGC 742775 *	130828.4 + 200202	1430	dIr	18.2	146			
PGC 1958740	130936.9+314034	1449	BCD	17.8				
AGC 742788 *	131000.8+185530	2365	BCD	18.1	157			
UGC 08246	131004.9+341051	825	SBc	14.82	116	30.90	tf	U 8246
2MFGC 10495	131024.2+213434	2547	Sc	16.28				
[MU 2012] J13	131029.2+341413	873	dIm	17.4				U 8246
NGC 5002	131038.2+363804	1125	Sm	14.69	90	30.42	tf	N 5005
PGC 2089756	131051.1+365623	1061	dIr	17.8				
NGC 5005	131056.3+370333	983	Sb	10.54	490	31.54	tf	N 5005
UGC 08261	131101.0+353008	881	Sm	16.36	94	31.70	bTF	N 5005
SDSS J131115	131115.8+365912	992	dIr	18.43				
PGC 2097739	131126.8+371843	998	dIm	17.48				

флуктуациям поверхностной яркости («sbf» [20]), и для девяти очень близких галактик расстояния измерены по светимости вершины ветви красных гигантов («rgb»). У остальных галактик нашей выборки модули расстояния определены по соотношению Талли-Фишера [21] с калибровкой по [22]:

 $M_B = -7.27(\lg W_{50}^c - 2.5) - 19.99,$

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 72 № 2 2017

где M_B — абсолютная величина в B-полосе, а ширина H I-линии (в км с⁻¹) исправлена за наклон галактики. Эти оценки обозначены в таблице 1 как «TF». Для галактик поздних типов (dIr, dIm, Sm), у которых H I-величина $m_{21} = -2.5 \lg F(HI) + 17.4$ ярче видимой величины, $m_{21} < B$, мы вводили «барионную поправку», заменяя в модуле расстояния B-величину на m_{21} . Эти случаи обозначены нами как «bTF». Галактики со средним значением модуля расстояния из NED отмечены в колонке (8) прописными буквами «tf». Всего в рассматриваемой области имеется 167 галактик с оценками расстояния по Талли—Фишеру, среди них наши новые оценки составляют около 70%.

Из H I-обзора ALFALFA [5, 6] у некоторых галактик ширина радиолинии W_{50} не соответствует структурному типу галактики T и ее видимой величине B_T . Причиной этого несоответствия может быть путаница при оптическом отождествлении радиоисточника или же низкое отношение сигнал/шум в линии H I. Такие галактики отмечены в таблице 1 звездочкой.

Распределение 412 галактик по лучевым скоростям и 181 галактики по расстояниям представлено на рис. 2а и 2b соответственно. Несколько галактик со скоростями более 2500 км с⁻¹ относятся к членам групп NGC 5353 и NGC 6181, средняя скорость которых лежит на рубеже выбранного диапазона $V_{\rm LG}$. На рис. 2а заметен локальный избыток галактик со скоростями около 1000 км с⁻¹, что, очевидно, вызвано наличием в рассматриваемой области галактик, ассоциирующихся с отрогами скопления Virgo. Часть этих галактик, по-видимому, обуславливает пик, который заметен на распределении N(D) при расстоянии $D \simeq 18$ Мпк (рис. 2b).

Рисунок 2с воспроизводит распределение 181 галактики области Hercules-Bootes по величине пекулярной скорости $V_{\rm pec} = V_{\rm LG} - H_0 \times D$ при значении параметра Хаббла $H_0 = 73 \,\mathrm{кm} \,\mathrm{c}^{-1}\mathrm{Mn}\mathrm{k}^{-1}.$ Гистограмма имеет вполне симметричный вид со средним значением $V_{\rm pec} = -179~{
m km\,c^{-1}}$ и дисперсией 425 км с⁻¹. При среднем расстоянии галактик выборки около 26 Мпк и типичной ошибке определения расстояния примерно 20% ожидаемая погрешность пекулярной скорости составляет 380 км с⁻¹. Превышение наблюдаемой дисперсии скоростей над ожидаемой может указывать на существование крупномасштабных движений галактик в области Hercules-Bootes. Заметим, что в рассматриваемом нами объеме количество галактик с оценками пекулярных скоростей примерно в два раза выше, чем содержится в сводках «Cosmicflows-2» и «Cosmicflows-3» [23, 24].

Общее распределение 412 галактик Hercules— Вооtes в экваториальных координатах представлено на рис. 3. Галактики с оценками расстояния и без них отмечены соответственно темными и светлыми кружками. Наиболее населенные группы обозначены именами их ярчайших членов. Эта диаграмма демонстрирует скучивание галактик в системы различной кратности, а также глобальное увеличение плотности числа галактик от левого края к правому с приближением к экватору Местного сверхскопления.

3. ГРУППЫ И ПАРЫ ГАЛАКТИК

При объединении галактик в системы разной кратности мы руководствовались критерием, предложенным в работе [9]. Согласно ему каждая виртуальная пара *ij* должна удовлетворять условию отрицательной полной энергии

$$V_{ij}^2 R_{ij} / (2GM_{ij}) < 1,$$

где G — постоянная тяготения, и условию нахождения ее компонентов внутри «сферы нулевой скорости», которая обособляет эту пару относительно глобального Хаббловского расширения

$$\pi H_0^2 R_{ij}^3 / (8GM_{ij}) < 1,$$

где H_0 — параметр Хаббла. Здесь V_{ij} и R_{ij} означают разности лучевых скоростей и проекции взаимных расстояний компонентов виртуальной пары, M_{ij} — их суммарную массу, выражаемую через K-светимость: $M/L_K = \kappa M_\odot/L_\odot$. Для оценки полной массы галактики принималось значение безразмерного параметра $\kappa = 6$, при котором наилучшим образом воспроизводятся структура и вириальная масса хорошо изученных близких групп. Алгоритм кластеризации подразумевает последовательный пересмотр всех галактик исходной выборки и последующее объединение в группу всех пар, имеющих общие члены.

Таким образом, в рассматриваемой области неба были выделены 17 групп галактик с населением из трех и более членов. Основные данные о них представлены в столбцах таблицы 2: (1) — имя ярчайшего члена группы; (2) — экваториальные координаты центра группы; (3) — число членов с измеренными лучевыми скоростями; (4) — средняя лучевая скорость группы (км с⁻¹); (5) — среднеквадратичная скорость галактик относительно средней (км с⁻¹); (6) — средний гармонический радиус группы (кпк); (7) — логарифм суммарной звездной массы группы (в единицах M_{\odot}), определенной по светимости ее членов в *K*-полосе при

Рис. 2. Распределение числа галактик в области Hercules—Bootes (а) по лучевым скоростям относительно центроида Местной группы, (b) по расстояниям и (c) по пекулярным скоростям.

 $M^*/L_K = M_{\odot}/L_{\odot};$ (8) — логарифм проекционной (вириальной) массы в единицах M_{\odot} :

$$M_p = (32/\pi G)(N - 3/2)^{-1} \sum_{i=1}^N \Delta V_i^2 R_i,$$

где ΔV_i и R_i — радиальная скорость и проекционное расстояние *i*-й галактики относительно центра системы; (9) — число членов с измеренными расстояниями; (10) — средний модуль расстояния группы; (11) — дисперсия модулей членов группы; (12) — линейное расстояние в Мпк при

среднем модуле $\langle m - M \rangle$; (13) — пекулярная скорость центра группы $V_{\rm pec} = \langle V_{\rm LG} \rangle - 73 \langle D \rangle$, км с⁻¹. Последняя строка таблицы соответствует средним значениям параметров.

Как следует из этих данных, характерный радиус группы (182 кпк) и характерная дисперсия лучевых скоростей (67 км с⁻¹) оказываются типичными для Местной группы и других близких групп в Местном объеме [25]. Характерная звездная масса группы в таблице 2 $M^* \simeq 4 \times 10^{10} M_{\odot}$ и отношение вириальной массы к звездной массе $M_p/M^* \simeq 32$

Рис. 3. Распределение галактик в области Hercules—Bootes в экваториальных координатах. Галактики с оценками расстояния изображены темными кружками, остальные галактики со скоростями V_{LG} < 2500 км с⁻¹ показаны светлыми кружками. Ярчайшие члены некоторых групп отмечены их именами.

Group	J2000.0	N_V	$\langle V_{\rm LG} \rangle$	σ_V	R_h	$\lg M^*$	$\lg M_p$	N_D	$\langle m-M \rangle$	$\sigma(m-M)$	D	$V_{\rm pec}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
NGC 4736	125053.1+410714	13	352	50	338	10.64	12.33	13	28.28	0.14	4.5	24
NGC 4866	125927.1+141016	5	1909	58	156	11.21	12.68	4	32.56	0.28	32.5	-464
NGC 5005	131056.2+370333	13	1010	114	224	11.48	12.97	9	31.24	0.41	17.7	-282
NGC 5117	132256.4 + 281859	4	2414	27	424	9.97	11.95	2	32.80	0.09	36.3	-236
NGC 5353	135539.9 + 402742	62	2593	195	455	12.07	13.69	16	32.73	0.39	35.2	16
NGC 5375	135656.0 + 290952	3	2311	47	66	10.62	11.68	1	32.94	—	38.7	-514
NGC 5582	142043.1+394137	6	1685	106	93	10.60	12.44	2	31.82	0.54	23.1	-1
NGC 5600	142349.5+143819	6	2295	81	275	10.69	12.38	3	32.05	0.91	25.7	419
UGC 9389	143533.2+125429	4	1822	45	204	9.68	12.08	4	32.54	0.19	32.2	-529
PGC 55227	152929.2 + 260024	3	2119	14	17	9.21	10.05	2	32.34	0.17	29.4	-27
NGC 5961	153516.2+305152	5	1891	63	86	10.14	12.20	1	32.51	_	31.8	-430
NGC 5962	153631.7+163628	8	1996	97	60	11.23	13.01	6	32.60	0.35	33.1	-420
NGC 5970	153830.0+121110	4	1949	92	141	10.81	12.54	3	32.45	0.28	30.9	-307
U 10043	154841.3+215210	5	2214	67	65	10.37	11.88	1	33.03	_	40.4	-735
NGC 6181	163221.0+194936	4	2568	53	196	11.06	12.14	3	32.65	0.19	33.9	93
U 10445	163347.4 + 285904	3	1118	23	230	9.92	11.60	1	31.57	—	20.6	-386
NGC 6574	181151.2+145854	3	2456	15	70	11.08	10.71	2	32.36	0.43	29.6	295
Average		9	1924	67	182	10.63	12.14	4	32.15	0.34	29.2	-205

Таблица 2. Свойства групп галактик в области Hercules-Bootes

также являются типичными для хорошо исследованных близких групп.

Если алгоритм кластеризации галактик выбран правильно, то дисперсия модулей расстояния членов групп должна определяться ошибками измерения расстояний. В нашем случае расстояния большинства галактик измерены методом ТаллиФишера, погрешность которого составляет приблизительно 20%, или 0^m4. Средняя дисперсия модулей для членов 17 групп составляет 0^m34, т.е. находится в согласии с ожидаемой величиной.

Среди 17 групп, перечисленных в таблице 2, группа галактик вокруг NGC 5353 выделяется высокими значениями звездной массы и вириальной

КАРАЧЕНЦЕВ и др.

Name	$\langle V_{\rm LG} \rangle$	ΔV	D	R_p	$\lg M^*$	$\lg M_{\rm orb}$	$\Delta(m-M)$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
U 8246	849	48	15.1	27	8.48	10.86	_
U 8318	2417	18	41.5	56	9.71	10.22	—
A 732599	1902	24	26.1	55	8.13	10.57	_
U 8507	980	29	12.6	132	9.25	11.11	0.87
P 169748	728	13	14.6	77	7.87	10.18	—
U 8667	1417	26	19.4	13	8.63	10.02	—
N 5303	1473	22	18.7	15	9.81	9.93	—
IC 4341	2386	39	38.4	103	10.06	11.26	—
N 5611	2076	80	25.2	54	10.23	11.61	—
U9274	1162	12	15.4	42	8.82	9.85	0.10
IC 1014	1278	2	18.3	73	9.37	8.53	0.43
U 9320	864	8	12.6	133	7.08	9.99	—
U 9356	2181	56	35.0	61	9.76	11.35	0.96
N 5727	1578	4	23.5	55	9.20	9.01	—
U 9504	1592	11	21.8	8	8.98	9.05	—
U 9519	1711	18	23.4	101	10.00	10.58	—
N 5762	1798	7	29.1	218	9.92	10.10	0.32
P 2080256	1978	1	27.1	10	8.70	7.07	—
U9562	1334	112	18.3	21	9.19	11.49	—
N 5798	1881	24	25.1	152	9.98	11.01	—
A 733735	2100	42	38.3	106	8.90	11.34	—
N 5958	2119	12	29.0	43	10.17	9.86	—
N 5956	1905	70	26.1	143	10.59	11.91	—
N 6012	2012	175	21.7	48	10.50	12.24	—
U 10086	2378	166	32.6	9	10.18	11.44	—
N 6207	1035	4	17.5	360	10.16	9.83	0.28
N 6255	1100	23	19.9	194	9.60	11.08	—
U 10625	2256	1	33.3	16	9.03	7.27	—
N 6550	2410	15	24.2	454	10.85	11.08	0.21
Average	1686	37	24.3	96	9.42	10.34	0.45

Таблица 3. Пары галактик в области Hercules-Bootes

массы. Структура и морфологический состав этой группы были исследованы в [26]. По лучевым скоростям пятнадцати наиболее ярких членов группы авторы определили вириальную массу этой системы как $2.1 \times 10^{13} M_{\odot}$. Наша оценка полной массы группы NGC 5353 по 62 галактикам с измеренными скоростями дает в два раза большее значение. При этом отношение $M_p/M^* = 47$ для нее также выглядит типичным для богатых групп, подобных близкой группе Leo I. Рассматривая филаментарные структуры галактик в широких окрестностях

скопления Virgo, Ким и др. [27] предположили, что группа NGC 5353 соединена с Virgo длинным (около 25°) тонким филаментом. Однако наши данные о скоростях и расстояниях галактик в этой области не подтверждают такое предположение.

Помимо 17 групп рассматриваемая область содержит 29 пар галактик, сводка которых представлена в таблице 3. Обозначения столбцов в ней аналогичны предыдущей таблице. Типичная пара имеет разность лучевых скоростей компонентов $\langle \Delta V_{12} \rangle = 37 \text{ км с}^{-1}$, проекционное расстояние

Рис. 4. Хаббловская диаграмма "скорость-расстояние" для центров групп (квадраты) и пар галактик (треугольники). Системы с оценками расстояния для двух и более членов выделены сплошными символами с обозначением ошибок среднего.

между компонентами $\langle R_{12} \rangle = 96$ кпк и звездную массу $\langle \lg M^*/M_{\odot} \rangle = 9.42$. Значение проекционной (орбитальной) массы пары

$$M_p = (16/\pi G)(\Delta V_{12})^2 R_{12}$$

в среднем в восемь раз больше суммарной звездной массы: $\langle \lg(M_p/M^*) \rangle = 0.92$. Средняя разность модулей расстояния компонентов пар 0^m45 свидетельствует о незначительной доле фиктивных, оптических пар среди них.

На рис. 4 представлена хаббловская диаграмма «скорость-расстояние» для центров групп и пар галактик в области Hercules-Bootes. Группы с индивидуальными оценками расстояния для двух и более членов обозначены сплошными квадратами, а группы с $N_D = 1$ показаны пустыми квадратами. Пары галактик с $N_D = 2$ и $N_D = 1$ изображены соответственно сплошными и пустыми треугольниками. Прямая линия соответствует параметру Хаббла 73 км с⁻¹Мпк⁻¹. Из этих данных следует, что увеличение числа членов группы с оценками расстояния по Талли-Фишеру способствует уменьшению дисперсии пекулярных скоростей центров групп. Мы ожидаем, что группы галактик, выделенные критерием [9] с $N_D > 4$, имеют типичную погрешность определения среднего расстояния около 10%, т.е. их средние скорости и средние оценки расстояния по методу Талли-Фишера могут быть успешно использованы для трассирования поля пекулярных скоростей наряду

9 АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 72 № 2 2017

с другими высокоточными методами («cep», «SN», «rgb»).

4. ПЕКУЛЯРНЫЕ ДВИЖЕНИЯ В ОБЛАСТИ HERCULES-BOOTES

Рассматривая наблюдательные данные о лучевых скоростях и расстояниях галактик в Местном сверхскоплении и его окрестностях, Талли и др. [28] выделили два главных фактора, формирующие местное поле пекулярных скоростей: падение галактик к центру скопления Virgo с характерной скоростью около 180 км с⁻¹ и удаление галактик от центра расширяющегося Местного войда с типичной скоростью примерно 260 км с⁻¹. Очевидно, что оба эти эффекта должны влиять на поле пекулярных скоростей в области Hercules-Вооtes, простирающейся между Местным войдом и скоплением Virgo.

Поскольку предполагаемый центр Местного войда располагается вблизи северного сверхгалактического полюса на широте SGB $\simeq +77^{\circ}$ [29], а центр Virgo находится почти на экваторе Местного сверхскопления (SGB $\simeq -2^{\circ}$), то приблизительная ортогональность этих направлений облегчает анализ поля пекулярных скоростей между ними.

Для всех галактик в зоне $RA = [13^{h}0, 19^{h}0]$, Dec = $[+10^{\circ}, +40^{\circ}]$ с оценками D и V_{pec} мы определили сверхгалактические координаты SGL и SGB. Для полноты картины к этой выборке

Рис. 5. Пекулярная скорость галактик Hercules—Bootes (темные кружки) и Bootes strip (светлые кружки) в зависимости от сверхгалактической широты. Ломаная линия соответствует бегущей медиане с окном 2°.5.

была прибавлена 161 галактика из Bootes strip: $RA = [13^{h}0, 18^{h}0], Dec = [-5^{\circ}, +10^{\circ}], с лучевыми$ $скоростями <math>V_{LG} < 2000$ км с⁻¹. Поведение медианного значения пекулярной скорости галактик вдоль сверхгалактической широты показано на рис. 5. Сплошная ломаная линия соответствует скользящей медиане с окном усреднения 2°.5. Чтобы сделать объединенную выборку более однородной, мы исключили из нее галактики Hercules–Bootes с $V_{LG} > 2000$ км с⁻¹. Галактики областей Hercules– Вооtes и Bootes strip изображены на рисунке соответственно темными и светлыми кружками.

Как следует из этих данных, на средних сверхгалактических широтах $SGB = [+10^\circ, +60^\circ]$ значения медианной пекулярной скорости галактик варьируются в узком диапазоне от -200 до -400 км c^{-1} . На низких сверхгалактических широтах, SGB $< 10^{\circ}$, медианное значение V_{pec} опускается до минимальной величины — около -700 км с⁻¹. Большинство галактик в зоне ${
m SGB} < 10^\circ$ имеют расстояния D > 16 Мпк, т.е. они находятся позади скопления Virgo. Падая в направлении скопления Virgo — массивного местного аттрактора, эти галактики приобретают значительную отрицательную пекулярную скорость по лучу зрения. Наблюдаемая амплитуда потока к Virgo оказывается сравнимой с вириальной дисперсией скоростей скопления $\sigma_V \simeq 650 \text{ км c}^{-1}$.

На другой стороне диаграммы при SGB > 60° статистика данных о пекулярных скоростях невелика. Тем не менее видна тенденция роста медианной скорости галактик в область положительных значений. Интерпретация этого эффекта зависит от модельных предположений о структуре и кинематике Местного войда. Если центр его расположен на расстоянии $D_c \simeq 10$ Мпк [30] при SGB_c = +77°, то галактики с типичным расстоянием $D \simeq 26$ Мпк вокруг расширяющегося войда

будут иметь положительную компоненту пекулярной скорости по лучу зрения. Однако реальная конфигурация Местного войда по данным [31] выглядит более сложной. По мнению авторов указанной работы, Местный войд представляет собой цепочку пустых объемов, которая, изгибаясь подобно подкове, охватывает как Местный объем, так и скопление Virgo.

Недавно Рицци и др. [32] измерили с высокой точностью rgb-расстояния до двух близких карликовых галактик, расположенных невдалеке от направления к центру Местного войда: KK246 $(D = 6.95 \text{ Мпк}, \text{SGB} = +40^\circ)$, а также ALFAZOA 1952+1428 (D = 8.39 Мпк, $SGB = +76^{\circ}$). Галактики имеют среднюю пекулярную скорость -90 ± 24 км с⁻¹. С учетом скорости удаления самого Млечного Пути от центра Местного войда около 230 км с⁻¹ это соответствует скорости удаления данных галактик от центра войда примерно 320 км с⁻¹. Таким образом, четыре различных набора наблюдательных данных ([28, 30, 32], настоящая статья) о пекулярных скоростях галактик в окрестностях ближайшего войда показывают, что стенки войда движутся наружу от его центра с характерной скоростью несколько сотен километров в секунду.

5. ДИСКУССИЯ

Как неоднократно отмечалось (см. [9, 11]), суммарная вириальная масса групп и скоплений в Местной вселенной диаметром около 100 Мпк составляет всего 8–10% от критической плотности, что примерно в три раза меньше глобальной плотности темной материи $\Omega_m = 0.26 \pm 0.02$. Значительное расширение наблюдательной базы за счет недавних оптических и Н І-обзоров неба это противоречие не устранило. В этой связи полезно

Parameter	Leo-Cancer	Bootes strip	Hercules-Bootes		
Sky area, sq.deg	1477	1121	2447		
$V_{ m LG}^{ m max}$, km s $^{-1}$	2000	2000	2500		
Volume, Mpc ³	3084	2337	9975		
N_V	543	361	412		
N_D	290	161	181		
Number density, Mpc^{-3}	0.176	0.154	0.042		
N(groups+pairs)	23+20	13+11	17+29		
Fraction of isolated	0.51	0.44	0.50		
$\sum M_{ m syst}^*, 10^{12} M_{\odot}$	3.50	2.63	2.62		
$ ho_{ m syst}^*/\langle ho^* angle$	2.47	2.45	0.57		
$\sum M_p, 10^{13} M_{\odot}$	9.10	8.80	9.58		
$\sum M_p / \sum M^*$	26	33	37		

Таблица 4. Сравнительные свойства трех изученных участков неба

рассмотреть, как выглядит проблема потерянной темной материи по данным для различных областей Местного сверхскопления.

В таблице 4 представлены основные характеристики трех изученных нами участков неба: Leo-Cancer, Bootes strip и Hercules-Bootes, pacположенных вне плоскости Местного сверхскопления, которая отягощена эффектами проекции. Первые три строки таблицы содержат площадь каждой области в квадратных градусах, максимальную величину скорости рассматриваемых галактик и объем каждой области в Мпк³ при $H_0 = 73 \text{ км c}^{-1} \text{ Мпк}^{-1}$. Две следующие строки (4 и 5) содержат число галактик в этих зонах с измеренными лучевыми скоростями (N_V) и расстояниями (N_D) . Как показано в строке 6, плотности числа галактик с измеренными скоростями примерно одинаковы в областях Leo-Cancer и Bootes, а в зоне Hercules-Bootes эта плотность оказывается существенно ниже других. Количество групп и пар галактик (строка 7) заметно меняется от зоны к зоне, причем наименее плотная область Hercules-Bootes содержит повышенное количество парных систем, состоящих из галактик низкой светимости. Относительное число одиночных (некластеризованных) галактик (строка 8) составляет около половины в каждой области, при этом в населении поля превалируют карликовые галактики. В строке 9 показана суммарная звездная масса галактик, входящих в системы разной кратности. Строка 10 содержит значение звездной плотности, выраженной в отношении к средней космической плотности $\langle \rho^* \rangle = \langle j_K \rangle = 4.3 \times 10^8 M_{\odot} \, {\rm M}$ пк⁻³ согласно [33] при $M^*/L_K = M_{\odot}/L_{\odot}$ [34]. Как видим, область Leo-Cancer и Bootes имеют среднюю звездную плотность в 2.5 раза выше глобальной, а область Негсиles—Вооtes находится ниже уровня средней космической плотности. В двух последних строках представлены суммарная вириальная (проекционная) масса всех групп и пар, а также ее отношение к сумме звездных масс этих систем. Заметим, что отношение $\sum M_p / \sum M^*$ меняется в небольшом диапазоне от 26 до 37, несмотря на значительные различия средней звездной плотности от одной области к другой.

При глобальной средней плотности звездной материи $\langle \rho^* \rangle = 4.3 \times 10^8 M_{\odot} \, \mathrm{Мп k}^{-3}$, которая известна в настоящее время с погрешностью около 30%, безразмерное отношение критической плотности материи к звездной составляет $\rho_c/\langle \rho^* \rangle = 350 \pm 100$ [35]. Наблюдаемые значения $\sum M_p / \sum M^*$ в трех рассматриваемых областях оказываются на порядок ниже критического отношения.

Заметим, что мы не принимали во внимание одиночные некластеризованные галактики, которые составляют около половины общего числа галактик в каждой области. Однако дополнительный анализ показывает, что их вклад в общую звездную массу не превышает 20%, поскольку большинство галактик поля имеет низкую светимость. Кроме того, одиночные галактики с их темными гало привносят вклад как в знаменатель, так и в числитель отношения $M_{\rm DM}/M^*$. Поэтому учет одиночных галактик не может существенно повлиять на величины, представленные в последней строке таблицы 4. Важно подчеркнуть, что значение $M_{\rm DM}/M^* \simeq 30$ является типичным для темных гало Млечного Пути, М 31, М 81 и других ярчайших галактик Местного объема [25]. Таким образом, наблюдаемый недостаток вириальной массы в близких системах галактик все еще остается актуальной проблемой для космологии Местной вселенной.

БЛАГОДАРНОСТИ

В данной работе были использованы базы данных NASA Extragalactic Database (NED) и HyperLEDA, а также данные обзоров неба HIPASS, ALFALFA и SDSS. ИДК и ОГК благодарят Российский научный фонд за поддержку грантом 14-12-00965.

СПИСОК ЛИТЕРАТУРЫ

- K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., Astrophys. J. Suppl. 182, 543 (2009).
- B. S. Koribalski, L. Staveley-Smith, V. A. Kilborn, et al., Astron. J. **128**, 16 (2004).
- O. I. Wong, E. V. Ryan-Weber, D. A. Garcia-Appadoo, et al., Monthly Notices Royal Astron. Soc. 371, 1855 (2006).
- L. Staveley-Smith, R. C. Kraan-Korteweg, A. C. Schröder, et al., Astron. J. 151, 52 (2016).
- R. Giovanelli, M. P. Haynes, B. R. Kent, et al., Astron. J. 130, 2598 (2005).
- 6. M. P. Haynes, R. Giovanelli, A. M. Martin, et al., Astron. J. **142**, 170 (2011).
- I. D. Karachentsev and D. I. Makarov, Astrophysical Bulletin 63, 299 (2008).
- 8. D. I. Makarov and I. D. Karachentsev, Astrophysical Bulletin **64**, 24 (2009).
- 9. D. Makarov and I. Karachentsev, Monthly Notices Royal Astron. Soc. **412**, 2498 (2011).
- N. A. Bahcall and A. Kulier, Monthly Notices Royal Astron. Soc. 439, 2505 (2014).
- 11. I. D. Karachentsev, Astrophysical Bulletin **67**, 123 (2012).
- 12. I. D. Karachentsev, O. G. Nasonova, and H. M. Courtois, Astrophys. J. **743**, 123 (2011).
- I. D. Karachentsev, O. G. Nasonova, and H. M. Courtois, Monthly Notices Royal Astron. Soc. 429, 2264 (2013).
- 14. I. D. Karachentsev and O. G. Nasonova, Monthly Notices Royal Astron. Soc. **429**, 2677 (2013).

- 15. I. D. Karachentsev, V. E. Karachentseva, and O. G. Nasonova, Astrophysics **57**, 457 (2014).
- I. D. Karachentsev, O. G. Nasonova, and V. E. Karachentseva, Astrophysical Bulletin 70, 1 (2015).
- 17. D. Makarov, P. Prugniel, N. Terekhova, et al., Astron. and Astrophys. **570**, A13 (2014).
- 18. E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. **737**, 103 (2011).
- 19. M. A. W. Verheijen and R. Sancisi, Astron. and Astrophys. **370**, 765 (2001).
- 20. J. L. Tonry, A. Dressler, J. P. Blakeslee, et al., Astrophys. J. **546**, 681 (2001).
- 21. R. B. Tully and J. R. Fisher, Astron. and Astrophys. **54**, 661 (1977).
- 22. R. B. Tully, L. Rizzi, E. J. Shaya, et al., Astron. J. **138**, 323 (2009).
- 23. R. B. Tully, H. M. Courtois, A. E. Dolphin, et al., Astron. J. **146**, 86 (2013).
- 24. R. B. Tully, H. M. Courtois, and J. G. Sorce, Astron. J. **152**, 50 (2016).
- 25. I. D. Karachentsev and Y. N. Kudrya, Astron. J. **148**, 50 (2014).
- 26. R. B. Tully and N. Trentham, Astron. J. **135**, 1488 (2008).
- 27. S. Kim, S.-C. Rey, M. Bureau, et al., Astrophys. J. 833, 207 (2016).
- 28. R. B. Tully, E. J. Shaya, I. D. Karachentsev, et al., Astrophys. J. **676**, 184 (2008).
- 29. A. V. Tikhonov and I. D. Karachentsev, Astrophys. J. **653**, 969 (2006).
- O. G. Nasonova and I. D. Karachentsev, Astrophysics 54, 1 (2011).
- 31. A. A. Elyiv, I. D. Karachentsev, V. E. Karachentseva, et al., Astrophysical Bulletin **68**, 1 (2013).
- 32. L. Rizzi, R. B. Tully, E. J. Shaya, et al., Astrophys. J. 835, 78 (2017).
- D. H. Jones, B. A. Peterson, M. Colless, and W. Saunders, Monthly Notices Royal Astron. Soc. 369, 25 (2006).
- 34. E. F. Bell, D. H. McIntosh, N. Katz, and M. D. Weinberg, Astrophys. J. Suppl. **149**, 289 (2003).
- 35. M. Fukugita and P. J. E. Peebles, Astrophys. J. **616**, 643 (2004).

Nearby Groups of Galaxies in the Hercules-Bootes Constellations

I.D. Karachentsev, O. G. Kashibadze, and V.E. Karachentseva

We consider a sample of 412 galaxies with radial velocities $V_{\rm LG} < 2500 \,\rm km \, s^{-1}$ situated in the sky region of RA = 13^m0-19^m0, Dec = +10°...+40° between the Local Void and the Supergalactic plane. One hundred and eighty-one of them have individual distance estimates. Peculiar velocities of the galaxies as a function of Supergalactic latitude SGB show signs of Virgocentric infall at $SGB < 10^{\circ}$ and motion from the Local Void at $SGB > 60^{\circ}$. A half of the Hercules–Bootes galaxies belong to 17 groups and 29 pairs, with the richest group around NGC 5353. A typical group is characterized by the velocity dispersion of 67 km s⁻¹, the harmonic radius of 182 kpc, the stellar mass of $4.3 \times 10^{10} M_{\odot}$ and the virial-to-stellar mass ratio of 32. The binary galaxies have the mean radial velocity difference of 37 km s⁻¹, the projected separation of 96 kpc, the mean integral stellar mass of $2.6 \times 10^9 M_{\odot}$ and the mean virial-to-stellar mass ratio of about 8. The total dark-matter-to-stellar mass ratio in the considered sky region amounts to 37 being almost the same as that in the Local Volume.

Keywords: galaxies: kinematics and dynamics—galaxies: distances and redshifts—galaxies: groups