УДК 524.827

ПОИСК КАНДИДАТОВ В ОБЪЕКТЫ С ЭФФЕКТОМ СЮНЯЕВА-ЗЕЛЬДОВИЧА В ОКРЕСТНОСТИ РАДИОИСТОЧНИКОВ

© 2018 О. В. Верходанов^{1*}, Н. В. Верходанова¹, О. С. Улахович², Д. И. Соловьев³, М. Л. Хабибуллина¹

¹Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия ²Приволжский (Казанский) федеральный университет, Казань, 420008 Россия ³Санкт-Петербургский филиал Специальной астрофизической обсерватории РАН, Санкт-Петербург,

196140 Россия

Поступила в редакцию 14 июня 2017 года; принята в печать 19 декабря 2017 года

По данным Вестерборкского обзора неба, проведенного на частоте 325 МГц в диапазоне прямых восхождений $0^{\rm h} \leq \alpha < 2^{\rm h}$ и склонений $29^{\circ} < \delta < 78^{\circ}$, и с применением многочастотных карт миссии Planck отобраны кандидаты в объекты с эффектом Сюняева–Зельдовича. Список наиболее вероятных кандидатов содержит 381 источник. Показано, что поиск объектов такого типа может быть ускорен при использовании априорной информации об отрицательном уровне флуктуаций на карте СМВ с удаленными низкими мультиполями в направлении на радиоисточники.

Ключевые слова: радиоконтинуум: галактики — реликтовое излучение

1. ВВЕДЕНИЕ

Гигантский объем наблюдательной информации. поступающей с наземных и орбитальных телескопов, позволяет в рамках потоковой обработки данных с применением корреляционного анализа значительно увеличить количество членов малочисленных популяций астрофизических объектов. Одним из космических экспериментов, анализ данных которого продолжается, является миссия Planck Европейского космического агентства (ESA). Общий объем информации, доступной для научного анализа, составляет несколько терабайт и требует наличия автоматизации обработки, поиска и отождествления объектов с заданными характеристиками. При этом часть наблюдаемых на картах неба объектов оказывается пропущенной в публикуемых каталогах. Проблема неполноты каталогов может быть решена при помощи новых алгоритмов и программ, чувствительных к топологическим, статистическим и спектральных характеристикам многочастотных карт космических миссий. Таким образом удастся увеличить число отождествленных объектов в текущих каталогах и проводить космологические исследования, используя всю полноту доступной информации.

В последнее десятилетие в наблюдательной астрофизике были проведены несколько обзоров,

Среди лидирующих направлений в космологических исследованиях остается изучение скоплений галактик в миллиметровом и субмиллиметровом диапазонах, наблюдаемых благодаря эффекту Сюняева—Зельдовича [5], а также в рентгеновском диапазоне, в котором наблюдается излучение горячего газа, и просто в видимом свете. Эти исследования позволяют проследить эволюцию масс скоплений и особенности формирования крупномасштабной структуры Вселенной в различные космологические эпохи.

Существенное расширение списка скоплений галактик в миллиметровом диапазоне связано с по-

которые позволили значительно улучшить точность (лучше 1%) измерения космологических параметров. Среди этих обзоров выделяются эксперименты на космических обсерваториях NASA WMAP [1] и ESA Planck [2] по измерению неоднородностей карты реликтового излучения, а также спектроскопический обзор галактик BOSS (Barion Oscillation Spectroscopic Survey) [3], проводимый в рамках исследования барионных акустических осцилляций как часть Слоановского цифрового обзора неба III (Sloan Digital Sky Survey III) [4]. Анализ данных этих обзоров привел к определению космологических параметров с выдающимся уровнем точности и построению современной эволюционной модели Вселенной от первых долей секунды ее существования до наших лней.

^{*}E-mail: vo@sao.ru

явлением многочастотных измерений микроволнового излучения, таких как эксперименты Planck [6], SPT [7] и АСТ [8]. Первые данные обсерватории Planck показали, что зарегистрированное число скоплений галактик (около 1.6 тыс.), наблюдаемых с помощью СЗ-эффекта, значительно (на 2 порядка) меньше, чем ожидается по данным оптических обзоров и по моделированию. Некоторые селекционные эффекты могут влиять на результаты обнаружения скоплений галактик с СЗ-механизмом. Это и трудноудаляемое фоновое излучение нашей Галактики, и точечные источники излучения, вклад которых в микроволновый фон перекрывает глубину СЗ-эффекта, и зависимость амплитуды излучения, определяемой этим эффектом, от массы скоплений, которая может иметь сравнительно большой разброс.

Также важно отметить, что для исследования далекой Вселенной используются и радиоисточники [9-11]. Благодаря набору их физических свойств, радиоисточники являются мощным средством для тестирования космологических эпох. С ними связаны и поиск самых далеких активных ядер галактик [12, 13], и поиск протоскоплений [14], и оценки скучивания фоновых объектов на разных красных смещениях [14, 15], и исследования гравитационного линзирования. С учетом возможностей миллиметровых и субмиллиметровых обзоров естественным образом возникает и задача поиска скоплений галактик, в которых находятся радиоисточники как на малых, так и на больших красных смещениях, с помощью эффекта Сюняева-Зельдовича. В данной работе мы проверяем возможность обнаружения СЗ-эффекта в окрестностях радиоисточников низкочастотного обзора WENSS [16] с применением многочастотных микроволновых карт космической миссии Planck.

2. ДАННЫЕ PLANCK

Данные Planck, благодаря лучшему, чем у WMAP, угловому разрешению (порядка 5 минут дуги) и чувствительности, позволили проводить исследования как точечных источников разных популяций, так и протяженных, размером от нескольких минут до десятков минут дуги, ассоциированных со скоплениями галактик. В этом плане при изучении скоплений галактик в микроволновом диапазоне космическая обсерватория Planck сыграла наиболее существенную роль, а построенные в результате ее работы карты полного неба на девяти частотах микроволнового диапазона: 30, 44, 70, 100, 143, 217, 353, 545 и 847 ГГц, являются основой для большого числа исследований, проводящихся в научных институтах разных стран. Карты спутника

Planck¹ [17] Европейского космического агентства были открыты для научного сообщества в 2013 г. и сразу стали эффективным инструментом в решении многих задач галактической и внегалактической астрономии. Кроме того, были представлены каталоги обнаруженных источников миллиметрового и субмиллиметрового излучения, имеющих галактическое и внегалактическое происхождение. Измерения потоков излучения в миссии были проведены на высокочастотном комплексе (High Frequency Instrument — HFI) с полосами 100 ГГц и на более высоких частотах, а также на низкочастотном (Low Frequency Instrument — LFI) с полосами на частотах ниже 100 ГГц. Угловое разрешение карт на частоте 30 ГГц составило около 32', на частотах выше 145 ГГц — порядка 5'. Точность определения координат источников на различных наблюдательных частотах варьируется от 50" до 40" [18]. Архив миссии Planck (Planck Legacy Archive — PLA²) содержит как карты компонент излучения, так и списки обнаруженных объектов, включая скопления галактик с эффектом Сюняева-Зельдовича.

Напомним, что различают два вида СЗ-эффекта: тепловой (tSZ), когда фотоны рассеиваются при случайном движении тепловых электронов, и кинематический (kSZ), обусловленный общим объемным движением электронов [19, 20]. В первом случае рассеянные фотоны СМВ имеют спектральную зависимость, во втором — при kSZ-эффекте спектр остается планковским. При действии теплового эффекта Сюняева-Зельдовича на низких наблюдательных частотах Planck в направлении на скопление будет регистрироваться недостаток фотонов из-за увеличения их энергии. Это приведет к появлению в области скопления галактик «ямки» на карте в миллиметровом диапазоне. За счет увеличения числа фотонов с большей энергией в субмиллиметровом диапазоне в направлении на скопление будет наблюдаться локальный пик излучения. Физически СЗ-эффект связан с обратным комптоновским взаимодействием фотонов СМВ и свободными электронами горячего газа скоплений галактик. В результате рассеяния эффективный спектр отклоняется от чернотельного. Единственный свободный параметр — параметр комптонизации Y_{SZ}, который описывается просто амплитудой. Микроволновой спектр скопления галактик, наблюдаемый в результате СЗ-эффекта, приводит к отрицательному сигналу на частотах 30—143 ГГц и положительному — на частотах свыше 217 ГГц. Эта особенность является уникальным наблюдательным проявлением, позволяющим выделять его среди других вариаций фона. Так

¹http://www.rssd.esa.int/Planck/

²http://pla.esac.esa.int/

как эффект слабый, его удается зарегистрировать только для наиболее ярких скоплений галактик. Для более слабых объектов карта $Y_{\rm SZ}$ становится чувствительной и к параметрам моделирования, и к систематическим ошибкам.

Задача обнаружения и исследования скоплений галактик по эффекту Сюняева-Зельдовича одна из самых главных среди заявленных в миссии Планк, а также в других современных исследованиях СМВ с хорошим угловым разрешением [21-23]. СЗ-эффект дает ряд преимуществ при изучении скоплений галактик. Параметр комптонизации Y_{SZ}, с помощью которого измеряют интегральное давление газа вдоль луча зрения и амплитуду СЗ-сигнала, не испытывает космологического ослабления по поверхностной яркости. Это делает СЗ-эффект мощным методом поиска скоплений галактик на больших красных смещениях. По полному СЗ-сигналу, интегрированному по угловому размеру, напрямую измеряют общую тепловую энергию газа и, следовательно, массу, с которой, как ожидается, коррелирует температура газа.

По результатам 29 месяцев наблюдений миссии Planck был подготовлен каталог, содержащий 1653 скопления галактик и кандидатов в скопления, в которых проявляется СЗ-эффект. Из них 1203 подтверждены оптическими наблюдениями. Представленный каталог охватывает область, занимающую 83.5% неба, и является крупнейшим и наиболее полным, включающим 1094 объекта с известными красными смещениями вплоть до $z \sim 1$. Массы скоплений распределены в довольно широком диапазоне $(0.1-1.6) \times 10^{15} M_{\odot}$.

3. ПОСТРОЕНИЕ АЛГОРИТМА

3.1. Селекция объектов

В данной работе мы развиваем предложенный ранее [24] метод селекции кандидатов в скопления галактик с помощью каталогов радиоисточников и карт космического микроволнового фонового излучения. Суть метода заключается в использовании космологических свойств формирования мощных внегалактических радиоисточников. Такие объекты принадлежат популяции галактик самой высокой светимости, что позволяет изучать их на больших красных смещениях и тем самым использовать как зонды состояния Вселенной в другие космологические эпохи. Чрезвычайно важным моментом при исследовании этих источников может считаться тот факт, что их родительскими галактиками являются гигантские эллиптические галактики (gE), которые, в принципе, могут использоваться как стандартные линейки и часы [11, 25, 26]. Правда, следует отметить, что самыми мощными радиоисточниками являются галактики в период большого мержинга, в результате которого и формируются gE, а также то, что не все gE-галактики являются родительскими объектами для мощных радиоисточников. Еще один момент, связанный с гигантскими эллиптическими галактиками, состоит в том, что их изучение важно и при прослеживании эволюции звездных систем на больших красных смещениях и при поиске далеких групп галактик или протоскоплений галактик, в центре которых они находятся, и при исследовании процессов слияния и взаимодействия, на которые может указывать проявляющаяся активность их ядер. Эпоха, на время которой приходится пик слияний галактик, продолжается во Вселенной возрастом от 1.5 до 4 млрд лет, что соответствует красным смещениям от 5 до 1.2 в стандартной АСDМ-космологической модели (модель с доминированием темной энергии и холодной темной материи). Так, в работе [14], посвященной исследованию окружения далеких радиогалактик по наблюдениям Ly-*a*, измерялось красное смещение, и с использованием данных о плотности объектов делался вывод об их принадлежности к протоскоплению. Было показано, что 75% радиогалактик с z > 2 ассоциируются с протоскоплениями. Отсюда авторы получили оценку, что приблизительно 3×10^{-8} формирующихся скоплений попадают в интервал 2 < z < 5.2 на сопутствующий куб со стороной 1 Мпк с активным радиоисточником. Однако очень вероятно, что в заданном диапазоне красных смещений число протоскоплений галактики может быть больше, т.к. активный радиоисточник может просто не наблюдаться. Таким образом, основываясь лишь на данных радиообзоров: каталогах радиоисточников и картах микроволнового фона, можно отобрать объекты — кандидаты в скопления галактик.

Использование каталога обзора WENSS (The Westerbork Northern Sky Survey), проведенного на северном небе с помощью Вестерборкского радиотелескопа в Нидерландах, неслучайно. Обзор WENSS [16] был выполнен на частоте 325 МГц и характеризуется предельным уровнем плотности потока около 18 мЯн (что соответствует примерно 5). Угловое разрешение радиоинтерферометра — $54'' \times 54'' \operatorname{cosec} \delta$, где δ — склонение. Обзор покрывает северную часть неба выше 29° по склонению. Хорошая чувствительность на низкой частоте позволяет отождествлять радиоисточники с данными обзоров, проведенных на более высоких частотах. Это в свою очередь дает возможность отбирать источники с крутыми радиоспектрами, которые ассоциируются с далекими радиогалактиками [14, 27, 28]. Таким образом, применение низкочастотного каталога радиоисточников при поиске объектов с эффектом Сюняева-Зельдовича

помогает выявить кандидаты в далекие скопления галактик. Первые поиски эффекта с помощью данных WENSS были проведены в работах [29, 30], и здесь мы развиваем предложенный подход. Площадь обзора WENSS составляет порядка 10 000 кв.градусов, а каталог содержит 211 234 радиоисточника. На рис. 1а черным цветом показано заполнение области обзора радиоисточниками при наложении на карту реликтового излучения. Каталог разбит на получасовые записи по прямому восхождению, и для начального анализа мы использовали данные первых двух часов. В исследуемом интервале оказались 16 384 объекта. Анализируемая площадь показана на рис. 1b.

3.2. Алгоритм селекции

Алгоритм отбора кандидатов включает несколь-ко этапов:

- Вырезание зоны в окрестности радиоисточников низкочастотного каталога WENSS [16] со стороной 30' на частотных картах 100, 143, 217, 353, 545 ГГц и на карте реликтового излучения, превышающей размер диаграммы направленности на частоте 217 ГГц примерно в шесть раз (и в три раза поисковый размер, используемый при анализе данных в работах Planck [18]).
- Выделение потенциальных СЗ-источников с помощью стандартной программы поиска SExtractor [31] в радиусе 7 минут дуги от центра площадки (при ширине диаграммы направленности радиотелескопа порядка 5') на частотах 100 и 143 ГГц с отрицательной амплитудой, а на 353 и 545 ГГц с положительной.
- Сравнение амплитуды детектированного источника на частотах 100 и 143 ГГц, |S₁₀₀| > |S₁₄₃|, и проверка наличия источника с положительной амплитудой на частоте 217 ГГц.
- Контроль отобранных объектов визуальным методом.
- Дополнительный контроль проверка наличия минимума на карте реликтового излучения с удаленными низкими (ℓ ≤ 20) мультиполями. Удаление низких мультиполей, содержащих статистически анизотропный сигнал [32], уменьшает искажения в площадках (рис. 2), что в свою очередь увеличивает контраст меньших неоднородностей. Минимум на карте СМВ наблюдается в направлении скопления галактик с проявлением СЗ-эффекта. Он образуется в результате выполнения процедуры разделения компонент [33].

Блок-схема селекции кандидатов в объекты с эффектом Сюняева—Зельдовича показана на рис. 3.

Для прохождения этапов селекции были разработаны специализированные командные файлы на языке управления задания Shell в операционной среде ОС Linux Scientific 6.4. Базовые утилиты (команды) работы с изображениями (вырезание из исходных карт mapcut и подготовка графического анализа f2fig) вызывались из пакета GLESP [34, 35]. Для выделения источников использовалась программа SExtractor [31]. Промежуточные карты готовились и сохранялись в архиве в стандартном астрономическом формате описания изображений FITS [36]. Отформатированные карты всего неба в микроволновом диапазоне в стандарте GLESP, которые использовались для анализа изображений, доступны на сайте $CMB^{3}[37].$

4. РЕЗУЛЬТАТЫ

4.1. Популяция радиоисточников

Каталог радиоисточников, отобранных по предложенной методике, содержит 381 объект WENSS из диапазона прямых восхождений $0^{\rm h} \leq \alpha < 2^{\rm h}$, отобранный при дополнительном визуальном контроле.

На рис. 4 приведена статистика спектральных индексов на частотах 326 МГц, 1.4 и 4.85 ГГц для популяции отобранных радиоисточников. На рис. 5 показана диаграмма «спектральный индекс γ на частоте 1.4 ГГц — вариация температуры СМВ.» Распределение уровня флуктуаций на карте СМВ SMICA Planck с мультиполями $20 < \ell \leq 2500$ в направлении на радиоисточники продемонстрировано на рис. 6. Штриховыми линиями показаны распределения $\pm 1\sigma$ - и $\pm 3\sigma$ -уровней флуктуаций в стандартной ACDM-космологической модели по данным 200 реализаций случайной гауссовой карты СМВ. Данные нормированы к числу пикселов. Случайные гауссовы реализации неоднородностей СМВ моделировались в рамках космологии **АСDM с помощью специализированной програм**мы cl2map пакета GLESP [34].

Распределение по спектральным индексам (рис. 4) позволяет выделить популяцию источников с предпочтительным наклоном радиоспектра, который описывает радиоизлучение объекта в скоплении с наблюдаемым эффектом Сюняева— Зельдовича. Медианное значение спектрального индекса выборки на частоте 1.4 ГГц оказалось равным $\gamma_{med} = -0.79$. Дополнительным свойством выборки, характеризующим популяцию, является отрицательное медианное значение сигнала на карте неоднородностей СМВ SMICA, построенной в диапазоне мультиполей $\ell \in [21-2500]$,

³http://cmb.sao.ru

Рис. 1. Карта реликтового излучения SMICA Planck в галактических координатах. Черным цветом показано заполнение радиоисточниками (a) полного обзора WENSS (24 часа по прямому восхождению) радиоисточниками, (b) области обзора WENSS (границы области по прямому восхождению: 0^h < α < 2^h).

Рис. 2. Карта СМВ SMICA Planck [17]: вверху: карта СМВ с полным набором сферических гармоник (2 ≤ ℓ ≤ 2500); внизу: карта СМВ с 20 < ℓ ≤ 2500.

Рис. 3. Блок-схема селекции кандидатов в объекты с эффектом Сюняева-Зельдовича в окрестности радиоисточников.

Рис. 4. Нормированное распределение спектральных индексов популяции радиоисточников WENSS с C3-эффектом из диапазона R.A. 0^h ≤ α < 2^h на частотах 325 МГц (сплошная линия), 1.4 (пунктирная линия) и 4.85 ГГц (штриховая линия).

Рис. 5. Диаграмма «спектральный индекс $\gamma_{1.4 \text{ GHz}}$ — вариация СМВ $\delta T_{\ell \in [21;2500]}$ » для радиоисточников исследуемой подвыборки.

в направлении на радиоисточник (см. рис. 5). Мы сравнили распределение откликов на карте CMB SMICA в направлении на радиоисточники с ожидаемым в Λ CDM-космологической модели по данным 200 случайных гауссовых реализаций CMB (рис. 6). Кроме того, что положение максимума распределения отклика сигнала на карте SMICA смещено в отрицательном направлении за предел 1 σ , оно имеет значительные искажения в области положительного сигнала, включая недостаток положительных откликов, превышающий уровень разброса 3σ .

4.2. Статистика отождествлений

Разработанный набор процедур на основе утилит пакета GLESP [35] был применен в процессе обработки карт неба в области исследуемой части обзора. Как уже говорилось ранее, для анализа

Рис. 6. Распределение уровня флуктуации СМВ в направлении на радиоисточники исследуемой подвыборки. Использована карта СМВ SMICA Planck с мультиполями 20 < ℓ ≤ 2500. Штриховыми линиями показаны распределения ±1σ-и ±3σ-уровней флуктуаций в стандартной ΛCDM-космологической модели по данным 200 реализаций случайной гауссовой карты СМВ.

мы использовали данные по радиоисточникам каталога WENSS в диапазоне прямых восхождений $0^{\rm h} < \alpha < 2^{\rm h}$ и склонений $20^{\circ} < \delta < 76^{\circ}$, содержащих астрометрическую (координаты) и астрофизическую (плотности потока) информацию на частоте 325 МГц, для 16364 объектов. После автоматической процедуры селекции кандидатов были отобраны 1778 объектов (10.9% от общего списка), из которых после визуальной инспекции был оставлен 381 источник (2.3% от общего списка) с наиболее типичными контрастными признаками наличия эффекта. Данные работы алгоритма и последующего визуального контроля сведены в таблицу 1.

Отметим, что визуальный контроль позволяет также отделить объекты с нетривиальными особенностями в области положительных пиков на низких частотах ($\nu < 217$ ГГц). Такие топологические эффекты возникают тогда, когда в области центра источника в радиусе размером 1.5 диаграммы направленности антенны радиотелескопа сигнал имеет сложную структуру. Например, имеются два положительных пика. Тогда возникает дополнительный локальный минимум, который алгоритм и детектирует. Так, кроме сигнала, топологически близкого к ожидаемому в случае присутствия эффекта Сюняева—Зельдовича, можно обнаружить по результатам работы алгоритма и радиоисточники, имеющие в исследуемой зоне

Таблица 1. Распределение объектов по интервалам прямого восхождения (первый столбец). Во втором столбце приведено количество радиоисточников в соответствующем интервале прямых восхождений каталога WENSS. В третьем — число объектов, отобранных по критерию наличия отрицательных пиков на частотах 100 и 143 ГГц и положительного пика на частоте 353 ГГц, в четвертом столбце приведены данные отбора наиболее ярких (контрастных) примеров объектов с эффектом Сюняева—Зельдовича. В скобках указано процентное содержание от числа объектов в исходном каталоге

RA, hh mm	$N_{\rm WENSS}$	$N_{100\&143}$	$N_{\rm visual}$
(1)	(2)	(3)	(4)
$00\ 00 \leq \alpha \leq 00\ 30$	4170	421 (10.1%)	144 (3.4%)
$00\ 30 \leq \alpha \leq 01\ 00$	4215	481 (11.4%)	104(2.5%)
$01\ 00 \leq \alpha \leq 01\ 30$	4021	428(10.6%)	65(1.6%)
$01\ 30 \leq \alpha \leq 02\ 00$	3958	448 (11.3%)	68 (1.7%)

максимум на низких или на всех частотах, и часто даже на опубликованной карте реликтового излучения. Кроме того, было проведено отождествление найденных объектов с каталогом C3-объектов миссии Planck [40] и каталога данных обзора SDSS [41], содержащего близкие скопления галактик с красными смещениями z < 0.42. Было обнаружено шесть совпадений с объектами каталога Planck, в котором насчитывается порядка

Рис. 7. Изображения области размером 30' × 30' вокруг радиоисточника WNB 0008.7+5121 из каталога WENSS на картах космической миссии Planck соответственно справа налево сверху вниз на частотах 30, 44, 70, 100, 143, 217, 353, 545, 857 ГГц, а также (последняя картинка) — на карте реликтового излучения. Объект отождествляется со списком скоплений галактик с эффектом Сюняева–Зельдовича из соответствующего каталога миссии Planck.

Рис. 8. То же, что на рис. 8, в окрестности радиоисточника WNB 0119.4+4418.

Рис. 9. Изображения области размером 30' × 30' в окрестности радиоисточника WNB 0016.5+4628 из каталога WENSS на картах космической миссии Planck соответственно справа налево сверху вниз на частотах 30, 44, 70, 100, 143, 217, 353, 545, 857 ГГц, а также (последняя картинка) — на карте реликтового излучения. Новый объект — кандидат в скопление с эффектом Сюняева–Зельдовича.

Рис. 10. То же, что на рис. 10, в окрестности радиоисточника WNB 0019.3+3120.

Рис. 11. Изображения области размером 30' × 30' вокруг радиоисточника WNB 0021.6+5627 из каталога WENSS на картах космической миссии Planck соответственно справа налево сверху вниз на частотах 30, 44, 70, 100, 143, 217, 353, 545, 857 ГГц, а также (последняя картинка) — на карте реликтового излучения. Радиоисточник наблюдается на всех картах.

Рис. 12. То же, что на рис. 12, в окрестности радиоисточника WNB 0023.6+4723.

1.6 тыс. объектов, а также 19 совпадений с данными по скоплениям из обзора SDSS. Любопытным фактом является детектирование 72 радиоисточников не только на картах, построенных для многочастотных данных, но и на карте реликтового излучения. Примеры обнаружения объекта отождествления в результате работы алгоритма показаны на рис. 7–12. На рис. 7 и 8 приведены изображения области вокруг радиоисточников WENSS из нашего списка с искомым сигналом на разных частотах, для которых имеются отождествления с объектами из каталога скоплений Planck. На рис. 9 и 10 показаны многочастотные изображения новых объектов, имеющих топологию сигнала, ожидаемую при наличии СЗ-эффекта. На рис. 11 и 12 даны изображения радиоисточников на разночастотных картах Planck и на карте СМВ.

Таким образом, по данным исследования можно сделать несколько важных выводов:

1) Кандидаты в объекты со слабо наблюдаемым эффектом Сюняева-Зельдовича на картах миссии Planck есть. На полном небе их, как минимум, в 10-30 раз больше, чем в опубликованных списках. Этот факт снимает противоречие между ожидаемым количеством скоплений галактик с СЗ-эффектом и их зарегистрированным числом.

2) Эффект «ямки» на карте СМВ при отборе радиоисточников — кандидатов в СЗ-объекты имеет место. И это позволяет проводить независимое тестирование на существование скопления галактик в области расположения радиоисточника. Отметим, что такой отрицательный сигнал образуется как остаточный эффект после процедуры разделения компонент излучения без учета априорной информации о наличии массивного скопления галактик (с существующим СЗ-эффектом) в данном направлении на небе.

3) В полях радиоисточников часто наблюдается родительский объект, излучение от которого остается на карте СМВ, полученной в результате разделения компонент протяженного фонового сигнала. Несмотря на множественные обнаружения подобных радиоисточников на карте СМВ, они не дают существенного вклада в определение космологических параметров, так как привносят искажения лишь в высокочастотную часть углового спектра мощности. Эта область менее значима, чем низкочастотная, при определении космологии.

4) Радиоисточники в скоплениях галактик могут экранировать эффект Сюняева—Зельдовича в миллиметровом диапазоне длин волн. Это уменьшает возможность его обнаружения.

Список радиоисточников каталога WENSS — кандидатов, находящихся в скоплениях галактик с эффектом Сюняева—Зельдовича, приведен в таблице 2. В колонках указаны имя объекта из каталога WENSS, его координаты, величина анизотропии температуры на карте СМВ SMICA ($20 < \ell \le 2500$) и спектральный индекс γ ($S \sim \nu^{\gamma}$) на частоте 1.4 ГГц, рассчитанный как тангенс угла наклона касательной к непрерывному радиоспектру. Радиоспектры строились с использованием плотностей потоков источников, измеренных в разных обзорах, из базы данных CATS (http://cats.sao.ru) и процедуры анализа радиоспектров spg [38] системы обработки континуальных данных на РАТАН-600 [39].

Таблица 2. Список отобранных источников с наличием эффекта Сюняева–Зельдовича из каталога WENSS в диапазоне прямых восхождений $0^{\rm h} \le \alpha < 2^{\rm h}$ на эпоху каталога (1950.0). В столбцах таблицы приведены имя радиоисточника по каталогу (индекс *s* указывает на наличие отождествления в [41], индекс *p* — в [40]), экваториальные координаты на эпоху 2000.0, величина анизотропии температуры на карте CMB SMICA ($20 < \ell \le 2500$) и значение спектрального индекса на частоте 1.4 ГГц

Имя WENSS,	RA + Dec	δT ,	Sp In
WNB	hh mm ss + dd mm ss	$10^{-6}\mathrm{K}$	5p.m.
(1)	(2)	(3)	(4)
0000.0 + 3207	$00\ 02\ 36+32\ 24\ 29$	-2467	-0.75
0000.1 + 4016	$00\ 02\ 44 + 40\ 32\ 53$	867	-0.91
$0000.3 + 3537^s$	$00\ 02\ 53+35\ 54\ 10$	-866	-0.49
$0000.5 + 3038^s$	000304 + 305457	-624	-0.95
0001.0 + 3849	$00\ 03\ 37+39\ 06\ 22$	-1742	-0.84
0001.1 + 3439	$00\ 03\ 45+34\ 56\ 18$	-98	0.20
0001.1 + 4651	$00\ 03\ 42 + 47\ 08\ 34$	213	-0.00
0001.2 + 3358	$00\ 03\ 48+34\ 15\ 32$	-611	-1.11
$0001.2 + 3416 {\rm C}^s$	000353 + 343444	-660	-0.90

Таблица 2.	(Продолжение)
raounda =	(продотшение)

Имя WENSS,	RA + Dec	δT ,	C Lu
WNB	hh mm ss + dd mm ss	10^{-6} K	Sp.1n.
(1)	(2)	(3)	(4)
0001.2 + 3755	000351 + 381204	92	-0.54
$0001.2+3803\mathrm{B}$	000352 + 382053	-473	-1.62
0001.6 + 3455	000414 + 351240	-381	-0.83
0001.8 + 3002	000425+301852	194	-0.92
0001.8 + 4134	$00\ 04\ 25+41\ 51\ 35$	-565	-0.80
0001.8 + 5244	000425+530054	-1406	-0.60
0001.9 + 5247	$00\ 04\ 32+53\ 04\ 27$	-1468	-0.53
0002.0 + 2905	$00\ 04\ 35+29\ 22\ 28$	851	-0.84
0002.0 + 2943	$00\ 04\ 35+30\ 00\ 30$	928	-0.80
0002.2 + 3145	$00\ 04\ 48 + 32\ 01\ 52$	-705	-0.96
0002.2 + 3425	$00\ 04\ 52+34\ 42\ 40$	-359	-0.73
0002.3 + 3617	$00\ 04\ 53+36\ 34\ 31$	191	-1.18
0002.5 + 4804	$00\ 05\ 08+48\ 21\ 39$	253	-0.74
0002.7 + 3407	$00\ 05\ 22+34\ 24\ 08$	-488	-1.36
0002.8 + 4935	$00\ 05\ 24+49\ 51\ 48$	-1249	-0.76
0002.8 + 4958	000527 + 501516	-1289	-1.01
0002.9 + 2934	$00\ 05\ 30+29\ 50\ 52$	677	-0.84
0003.0 + 3447	000537 + 350437	253	-0.50
0003.0 + 4709	000539 + 472641	105	-0.86
0003.2 + 4243	$00\ 05\ 52+43\ 00\ 13$	-351	-0.13
0003.3 + 3322	$00\ 05\ 57+33\ 39\ 16$	518	-0.79
0003.4 + 4244	$00\ 06\ 03+43\ 01\ 27$	-351	0.00
0003.4 + 4614	$00\ 06\ 02 + 46\ 31\ 36$	69	-1.47
0003.5 + 3413	$00\ 06\ 10+34\ 29\ 48$	-502	-2.01
0003.6 + 3326	$00\ 06\ 16+33\ 43\ 28$	1054	-1.16
0003.7 + 5324	$00\ 06\ 21 + 53\ 41\ 32$	-1932	-0.72
0004.5 + 4416	$00\ 07\ 10+44\ 33\ 16$	147	-0.82
0004.8 + 3510	$00\ 07\ 26+35\ 27\ 03$	290	-0.80
0005.2 + 5955	$00\ 07\ 50+60\ 12\ 26$	-1879	-0.99
0005.4 + 4057	$00\ 08\ 01 + 41\ 14\ 02$	358	-1.23
0005.4 + 4608	$00\ 08\ 05 + 46\ 24\ 54$	502	-0.89
0005.8 + 3815	$00\ 08\ 25+38\ 32\ 25$	-911	-0.62
0005.9 + 4104	$00\ 08\ 33 + 41\ 20\ 48$	-47	-0.32
0006.4 + 2941	$00\ 09\ 01+29\ 58\ 06$	505	-0.69
0006.4 + 4754	$00\ 09\ 00 + 48\ 11\ 18$	-305	-1.19
0006.8 + 3729	$00\ 09\ 25+37\ 45\ 55$	-2109	-0.62
0006.8 + 4744	$00\ 09\ 27+48\ 01\ 29$	282	-1.25
$0007.3 + 3015^s$	$00\ 09\ 53 + 30\ 32\ 03$	-1271	-0.40
$0007.5 + 3124^s$	$00\ 10\ 06+31\ 40\ 43$	-926	-1.26
0007.6 + 4629	$00\ 10\ 15+46\ 46\ 21$	2051	-0.54
0007.8 + 3126	$00\ 10\ 25+31\ 42\ 55$	-698	-0.41
0008.6 + 3159B	$00\ 11\ 20 + 32\ 15\ 22$	-638	-0.69
$0009.0 + 3203^{s, p}$	$00\ 11\ 41 + 32\ 20\ 15$	-756	-0.56
0009.0 + 3601	$00\ 11\ 39+36\ 17\ 43$	-417	-0.30

Имя WENSS,	RA + Dec	δT ,	C. L.
WNB	hh mm ss + dd mm ss	10^{-6} K	Sp.In.
(1)	(2)	(3)	(4)
0009.1 + 3209	$00\ 11\ 45+32\ 25\ 42$	-469	-0.93
0010.2 + 4016	$00\ 12\ 53+40\ 32\ 47$	-1376	-0.85
0010.2 + 4347	$00\ 12\ 55+44\ 04\ 06$	-1321	-1.33
0010.2 + 4529	$00\ 12\ 51+45\ 46\ 16$	-715	-2.15
0010.2 + 4611	$00\ 12\ 53+46\ 28\ 26$	515	-0.84
0010.3 + 5237	$00\ 12\ 59+52\ 54\ 27$	-639	-0.94
0010.4 + 3013	$00\ 13\ 03 + 30\ 30\ 21$	-1769	-1.12
0010.6 + 4750	$00\ 13\ 16+48\ 07\ 35$	-1061	-0.66
0011.7 + 3055	$00\ 14\ 22 + 31\ 11\ 42$	-989	-0.61
0012.1 + 4809A	$00\ 14\ 40 + 48\ 25\ 16$	-981	-1.04
0012.1 + 4809B	$00\ 14\ 47 + 48\ 26\ 18$	-981	-1.02
0012.4 + 4531	$00\ 15\ 04 + 45\ 48\ 04$	-1200	-0.97
0012.6 + 2957	$00\ 15\ 16+30\ 14\ 18$	-536	-0.69
0012.7 + 4929	$00\ 15\ 23 + 49\ 45\ 60$	802	-0.64
0013.1 + 3225	$00\ 15\ 43 + 32\ 42\ 14$	591	-0.53
0013.2 + 3358	$00\ 15\ 49 + 34\ 15\ 22$	-329	-1.06
0013.2 + 5024	$00\ 15\ 55+50\ 41\ 25$	877	-1.20
0013.2 + 5424	$00\ 15\ 55+54\ 41\ 27$	-317	-1.26
0013.3 + 3348	$00\ 15\ 60 + 34\ 05\ 21$	-231	-0.85
0013.3 + 5021	$00\ 15\ 58+50\ 38\ 29$	922	-0.96
0013.4 + 3227	$00\ 16\ 04 + 32\ 44\ 32$	483	-0.50
0013.7 + 5140	$00\ 16\ 24 + 51\ 57\ 31$	775	-0.94
0013.9 + 3845	$00\ 16\ 36+39\ 01\ 54$	-409	-0.46
0014.0 + 3506	$00\ 16\ 40 + 35\ 22\ 53$	250	-0.20
0014.1 + 3920	$00\ 16\ 49 + 39\ 37\ 20$	-487	-0.93
0014.1 + 7449	$00\ 16\ 57+75\ 05\ 41$	1151	0.66
0014.2 + 3931	$00\ 16\ 54+39\ 48\ 12$	-468	-0.94
0014.2 + 5719	$00\ 16\ 56\ +\ 57\ 35\ 51$	391	0.00
0014.9 + 4509	$00\ 17\ 37+45\ 26\ 23$	-980	-0.79
0014.9 + 7523	$00\ 17\ 52+75\ 40\ 38$	-217	-0.70
$0015.6 + 3132^s$	$00\ 18\ 16\ +\ 31\ 49\ 15$	-1552	-0.87
0016.0 + 3023	$00\ 18\ 40\ +\ 30\ 40\ 25$	-1452	-0.63
0016.2 + 3540	$00\ 18\ 51\ +\ 35\ 57\ 17$	-1105	-0.88
0016.4 + 3830	$00\ 19\ 04 + 38\ 46\ 55$	-534	-0.82
0016.5 + 3256C	$00\ 19\ 21+33\ 13\ 19$	-14	0.11
0017.4 + 4313	$00\ 20\ 07\ +\ 43\ 30\ 09$	-1372	-1.00
0017.8 + 3050	$00\ 20\ 25 + 31\ 06\ 54$	-2104	-0.94
0018.0 + 4521	$00\ 20\ 41 + 45\ 37\ 44$	-391	-0.58
0018.7 + 4251	$00\ 21\ 26\ +\ 43\ 07\ 45$	-2022	-0.76
0018.7 + 4737	$00\ 21\ 22\ +\ 47\ 54\ 30$	241	-0.95
0018.8 + 3425A	$00\ 21\ 24 + 34\ 44\ 45$	1200	-0.39
$0018.8 + 3425^{s}$	002126 + 344232	1033	-0.85
$0018.8 + 3459B^{p}$	002128 + 351719	-1697	-0.75
0019.1 + 4311	$00\ 21\ 48+43\ 28\ 25$	-1938	-1.00

Таблица 2. (Продолжение)

Имя WENSS,	RA + Dec	δT ,	Sn In
WNB	hh mm ss + dd mm ss	$10^{-6}{ m K}$	5p.m.
(1)	(2)	(3)	(4)
0019.2 + 4358	$00\ 21\ 52+44\ 15\ 27$	-477	-0.95
0019.6 + 4739	$00\ 22\ 21 + 47\ 56\ 17$	241	-0.97
0020.0 + 4402A	$00\ 22\ 32+44\ 18\ 17$	-368	-0.78
0020.1 + 3252	$00\ 22\ 48+33\ 09\ 06$	881	-0.58
0020.4 + 3649	$00\ 23\ 07+37\ 05\ 53$	-1207	-0.76
0020.9 + 3710	$00\ 23\ 36+37\ 26\ 59$	-1698	-1.05
0021.1 + 4915	$00\ 23\ 51+49\ 31\ 47$	48	-0.84
0021.4 + 4038	$00\ 24\ 04 + 40\ 55\ 21$	-662	-0.63
$0021.5 + 3702^s$	$00\ 24\ 12+37\ 18\ 45$	-2039	-0.85
0021.7 + 5815	$00\ 24\ 29+58\ 32\ 11$	120	-0.63
0022.0 + 3012	$00\ 24\ 42 + 30\ 29\ 26$	-2300	-0.86
0022.2 + 4102	$00\ 24\ 55+41\ 19\ 05$	-523	-0.68
0022.4 + 3124	$00\ 25\ 03 + 31\ 41\ 26$	-1022	-0.68
0022.4 + 4038	$00\ 25\ 05 + 40\ 55\ 29$	-662	-0.61
0022.6 + 3354	$00\ 25\ 20+34\ 11\ 08$	1378	-0.58
0023.3 + 4153	$00\ 26\ 02 + 42\ 09\ 40$	-462	-1.47
0024.0 + 4839	$00\ 26\ 45+48\ 55\ 55$	1317	-0.60
0024.1 + 3008	$00\ 26\ 45+30\ 25\ 35$	-2428	-0.75
0024.3 + 3407	$00\ 26\ 60+34\ 24\ 33$	667	-0.51
0024.5 + 4618	$00\ 27\ 16+46\ 34\ 57$	-99	-0.69
0024.6 + 4230A	$00\ 27\ 16+42\ 45\ 15$	-1215	0.96
0024.6 + 4230	$00\ 27\ 18+42\ 46\ 59$	-1591	-1.24
0024.6 + 4230B	$00\ 27\ 19+42\ 47\ 49$	-1591	-1.21
0024.9 + 3811	$00\ 27\ 34+38\ 27\ 36$	-712	-0.41
0025.0 + 3146	$00\ 27\ 44 + 32\ 03\ 17$	-1840	-1.58
0025.0 + 4205	$00\ 27\ 44 + 42\ 21\ 44$	-1095	-1.02
0025.8 + 3928	$00\ 28\ 34+39\ 44\ 41$	-994	-0.98
0025.8 + 3931	$00\ 28\ 31+39\ 48\ 26$	-1137	-0.77
0026.2 + 4616	$00\ 28\ 59+46\ 33\ 08$	-67	-0.57
0026.7 + 3016	$00\ 29\ 25+30\ 33\ 28$	-1692	-0.60
0026.9 + 4405	$00\ 29\ 37+44\ 22\ 11$	28	-0.84
0027.0 + 3932	$00\ 29\ 44 + 39\ 48\ 40$	941	-0.73
0027.1 + 7135	$00\ 30\ 10+71\ 51\ 47$	159	-0.33
0027.2 + 4143	$00\ 29\ 55+42\ 00\ 25$	-74	-1.51
0027.3 + 4659	$00\ 30\ 06+47\ 15\ 43$	-683	-0.20
0027.4 + 4624	$00\ 30\ 12+46\ 40\ 36$	-405	-0.41
0027.7 + 4035	$00\ 30\ 25+40\ 52\ 33$	185	-0.14
0027.9 + 4220	$00\ 30\ 40+42\ 37\ 06$	513	-0.79
0027.9 + 5847	$00\ 30\ 43 + 59\ 04\ 20$	-1284	-0.65
0028.0 + 3418A	$00\ 30\ 40+34\ 36\ 01$	208	-0.44
0028.0 + 3418	$00\ 30\ 45+34\ 34\ 45$	110	-0.93
0028.7 + 4923	$00\ 31\ 27+49\ 40\ 23$	-233	-1.10
0028.9 + 5337	$00\ 31\ 43 + 53\ 54\ 01$	-956	-0.85
0029.0 + 5332	$00\ 31\ 52+53\ 49\ 07$	-799	-0.65

Таблица 2. (Продолжение)

	D4 · D	(m	
Имя WENSS,	RA + Dec	δT ,	Sp.In.
	hh mm ss + dd mm ss (2)	10 °K	(4)
(1)	(2)	(3)	(4)
0029.1 + 3744	$00\ 31\ 50\ +\ 38\ 01\ 03$	431	-0.18
0029.6 + 4507	$00\ 32\ 19+45\ 24\ 03$	223	-0.16
0029.8 + 3605	$00\ 32\ 33 + 36\ 22\ 12$	-836	0.58
0030.3 + 3054	003301 + 311049	-684	-1.16
0030.5 + 3059	$00\ 33\ 12+31\ 16\ 30$	-799	0.37
0030.8 + 3721	$00\ 33\ 30+37\ 37\ 40$	-1180	-0.70
0030.8 + 3910	$00\ 33\ 33 + 39\ 27\ 28$	-939	-1.44
0030.9 + 4847	$00\ 33\ 42 + 49\ 03\ 38$	774	-0.09
0031.0 + 3049	003344 + 310546	-971	-1.18
0031.2 + 5254	003401 + 531118	-2138	-0.46
0031.3 + 3946	$00\ 34\ 06\ +\ 40\ 02\ 51$	59	-0.45
0031.6 + 4139	$00\ 34\ 22 + 41\ 55\ 57$	-611	-0.95
0031.7 + 4019	$00\ 34\ 29 + 40\ 35\ 54$	-555	-0.85
0031.9 + 3507A ³	$00\ 34\ 36\ +\ 35\ 23\ 53$	-663	-0.45
0032.1 + 5116	$00\ 34\ 53\ +\ 51\ 33\ 22$	-797	-0.49
0033.0 + 2933	$00\ 35\ 40\ +\ 29\ 49\ 45$	-188	-1.01
0033.5 + 3029	$00\ 36\ 10\ +\ 30\ 45\ 33$	-648	-0.79
0034.2 + 3530	003050 + 354037	202	-1.52
0034.2 + 4339	$00\ 30\ 58\ +\ 43\ 50\ 18$	-003	-1.19
0034.3 ± 3030	$00\ 30\ 59\ +\ 30\ 40\ 32$ $00\ 27\ 00\ +\ 22\ 20\ 41$	-910	-1.12
0034.0 + 3213A 0024.5 + 2215	003709 ± 323041 002711 ± 222216	-1292	-0.95
0034.3 ± 3213 0024.5 ± 2418	00 37 11 + 32 32 10 00 27 16 + 24 24 52	-1423	-0.98
0034.5 ± 4400	$00\ 37\ 10 \pm 34\ 34\ 32$ $00\ 37\ 16 \pm 44\ 17\ 26$	- 906	-0.04
0034.3 ± 4526	$00\ 37\ 10\ +\ 44\ 17\ 20$ $00\ 37\ 33\ +\ 45\ 43\ 08$	-364	-0.00
0034.8 ± 3012	$00\ 37\ 30\ \pm\ 30\ 28\ 58$	-304 -474	-0.81
0035.0 ± 3701	$00\ 38\ 38\ \pm\ 37\ 18\ 05$	-510	-1.09
0036.2 ± 4138	003857 + 415440	-1512	-0.53
0036.2 + 4418	003900 + 443526	847	-1.10
0036.3 + 3221 A	003900 + 113620 003901 + 323612	-862	-1.00
0036.3 + 3221B	003909 + 323942 003909 + 323942	-529	-1.14
0036.4 + 3636	$00\ 39\ 06 + 36\ 52\ 54$	-1223	-0.33
0036.7 + 3216	$00\ 39\ 24 + 32\ 32\ 44$	-730	-1.06
0036.7 + 4320	$00\ 39\ 29+43\ 36\ 51$	-698	-0.64
0036.9 + 4138	$00\ 39\ 40 + 41\ 55\ 07$	-406	-0.81
0037.5 + 4640	$00\ 40\ 18+46\ 57\ 15$	-685	-0.91
0037.7 + 3539	$00\ 40\ 28 + 35\ 56\ 11$	505	-0.91
0037.7 + 3805	$00\ 40\ 26 + 38\ 21\ 32$	-94	-0.82
0037.9 + 4157	$00\ 40\ 44 + 42\ 13\ 31$	-658	-0.79
0038.2 + 3310	$00\ 40\ 56+33\ 26\ 32$	-32	-0.71
0038.6 + 3802	$00\ 41\ 19+38\ 19\ 03$	-128	-0.87
$0039.3+3642\mathrm{A}^s$	$00\ 41\ 55+36\ 58\ 57$	-1132	0.26
$0039.3 + 3642^{s}$	$00\ 42\ 02 + 36\ 59\ 25$	-1132	-0.93
0039.5 + 3218	$00\ 42\ 16+32\ 34\ 47$	-1035	-0.14

Таблица 2. (Продолжение)

Е	ВЕРХОДАНОВ и др.		
Табл	ица 2. (Продолжение)	
Имя WENSS,	RA + Dec	δT ,	Sn In
WNB	hh mm ss + dd mm ss	$10^{-6}{ m K}$	3p.m.
(1)	(2)	(3)	(4)
0039.6 + 3110	$00\ 42\ 22 + 31\ 26\ 44$	345	-1.34
0039.7 + 4814	$00\ 42\ 31+48\ 31\ 15$	-340	-0.81
0040.0 + 5720	$00\ 42\ 53+57\ 36\ 38$	-825	-0.83
0040.4 + 3315	$00\ 43\ 08+33\ 31\ 57$	-1179	-0.87
0040.7 + 3806	$00\ 43\ 31 + 38\ 22\ 40$	-105	0.45
0040.9 + 3452	$00\ 43\ 39+35\ 09\ 13$	-207	-0.42
0041.2 + 3346	$00\ 43\ 59+34\ 03\ 03$	-961	-1.02
0041.9 + 4732	$00\ 44\ 47+47\ 48\ 31$	-1123	-0.60
0042.1 + 3436	$00\ 44\ 52+34\ 52\ 58$	-23	-0.70
0042.1 + 4732	$00\ 44\ 58+47\ 48\ 42$	-1123	-0.63
0042.6 + 4653	$00\ 45\ 28+47\ 09\ 25$	-181	-0.53
0042.9 + 4657	$00\ 45\ 42+47\ 14\ 12$	205	-0.63
0042.9 + 5111	$00\ 45\ 49 + 51\ 28\ 21$	-387	-0.80
0043.3 + 4444	$00\ 46\ 06+45\ 01\ 13$	-2875	-0.74
0043.6 + 3104	$00\ 46\ 20+31\ 21\ 16$	-405	-0.25
0043.8 + 3453	$00\ 46\ 31+35\ 10\ 06$	-272	0.23
0044.0 + 4902	$00\ 46\ 53+49\ 19\ 06$	-2242	-1.16
$0044.1 + 3811^s$	$00\ 46\ 53+38\ 27\ 31$	-1695	-0.79
0044.4 + 3901	$00\ 47\ 12+39\ 18\ 18$	-447	-0.68
0044.4 + 4908	$00\ 47\ 17+49\ 25\ 11$	-2380	-0.35
0044.6 + 7431	$00\ 48\ 03 + 74\ 47\ 41$	-860	-1.16
0044.7 + 3358	$00\ 47\ 30+34\ 14\ 32$	-1324	-1.68

WNB	hh mm ss + dd mm ss	10 °K	
(1)	(2)	(3)	(4)
0039.6 + 3110	$00\ 42\ 22 + 31\ 26\ 44$	345	-1.34
0039.7 + 4814	$00\ 42\ 31+48\ 31\ 15$	-340	-0.81
0040.0 + 5720	$00\ 42\ 53+57\ 36\ 38$	-825	-0.83
0040.4 + 3315	$00\ 43\ 08+33\ 31\ 57$	-1179	-0.87
0040.7 + 3806	$00\ 43\ 31 + 38\ 22\ 40$	-105	0.45
0040.9 + 3452	$00\ 43\ 39+35\ 09\ 13$	-207	-0.42
0041.2 + 3346	$00\ 43\ 59+34\ 03\ 03$	-961	-1.02
0041.9 + 4732	$00\ 44\ 47+47\ 48\ 31$	-1123	-0.60
0042.1 + 3436	$00\ 44\ 52+34\ 52\ 58$	-23	-0.70
0042.1 + 4732	$00\ 44\ 58+47\ 48\ 42$	-1123	-0.63
0042.6 + 4653	$00\ 45\ 28+47\ 09\ 25$	-181	-0.53
0042.9 + 4657	$00\ 45\ 42+47\ 14\ 12$	205	-0.63
0042.9 + 5111	$00\ 45\ 49 + 51\ 28\ 21$	-387	-0.80
0043.3 + 4444	$00\ 46\ 06+45\ 01\ 13$	-2875	-0.74
0043.6 + 3104	$00\ 46\ 20+31\ 21\ 16$	-405	-0.25
0043.8 + 3453	$00\ 46\ 31+35\ 10\ 06$	-272	0.23
0044.0 + 4902	$00\ 46\ 53+49\ 19\ 06$	-2242	-1.16
$0044.1 + 3811^{s}$	$00\ 46\ 53+38\ 27\ 31$	-1695	-0.79
0044.4 + 3901	$00\ 47\ 12+39\ 18\ 18$	-447	-0.68
0044.4 + 4908	$00\ 47\ 17+49\ 25\ 11$	-2380	-0.35
0044.6 + 7431	$00\ 48\ 03 + 74\ 47\ 41$	-860	-1.16
0044.7 + 3358	$00\ 47\ 30+34\ 14\ 32$	-1324	-1.68
0044.7 + 3858	$00\ 47\ 30+39\ 15\ 13$	-629	-0.34
0044.9 + 3011	$00\ 47\ 37+30\ 28\ 00$	90	-0.51
0045.2 + 5258	$00\ 48\ 06+53\ 14\ 43$	550	-0.64
0045.4 + 3356	$00\ 48\ 08 + 34\ 13\ 07$	-1203	-0.59
0045.5 + 3247	$00\ 48\ 16+33\ 04\ 03$	68	-0.12
0045.6 + 7437	$00\ 49\ 04 + 74\ 54\ 03$	-717	-0.97
$0045.8 + 3958^{s}$	$00\ 48\ 36+40\ 14\ 25$	-602	-0.51
0046.7 + 3532	$00\ 49\ 30+35\ 49\ 09$	-810	-0.59
0047.0 + 4038	$00\ 49\ 48 + 40\ 54\ 22$	307	-0.68
0047.2 + 3222	$00\ 49\ 57+32\ 38\ 50$	-301	0.05
0047.2 + 3445	$00\ 49\ 59+35\ 01\ 59$	-976	-0.37
0047.8 + 3314	$00\ 50\ 35+33\ 30\ 20$	-517	-0.67
0047.9 + 3756	$00\ 50\ 45+38\ 13\ 13$	-1177	-0.88
0048.0 + 5802	$00\ 50\ 59+58\ 19\ 07$	-153	-1.30
0049.0 + 3253	$00\ 51\ 49+33\ 09\ 51$	-36	-0.63
0049.0 + 3630	$00\ 51\ 45+36\ 47\ 13$	-696	-0.59
0049.4 + 4217	$00\ 52\ 16+42\ 33\ 26$	813	-1.03
0049.5 + 3836A	$00\ 52\ 12 + 38\ 51\ 54$	-1085	0.18
0049.5 + 3836B	$00\ 52\ 19+38\ 53\ 07$	-1093	-0.75
0049.7 + 4801	$00\ 52\ 35+48\ 17\ 38$	-2034	-0.55
0049.8 + 5355	$00\ 52\ 42 + 54\ 11\ 57$	-204	-0.06
0050.3 + 4731	$00\ 53\ 09 + 47\ 48\ 00$	-1037	0.20

Имя WENSS,	RA + Dec	δT ,	о I
WNB	hh mm ss + dd mm ss	10^{-6} K	Sp.In.
(1)	(2)	(3)	(4)
0050.6 + 2921	$00\ 53\ 24+29\ 37\ 35$	-846	-1.28
0050.9 + 4039	$00\ 53\ 42 + 40\ 55\ 29$	-1148	-0.53
0053.6 + 3544	$00\ 56\ 26+36\ 00\ 20$	-1253	-1.19
0054.6 + 5034	$00\ 57\ 31+50\ 50\ 19$	358	-0.38
0056.3 + 4705	$00\ 59\ 13+47\ 21\ 41$	-2511	-1.34
0056.4 + 3748	$00\ 59\ 13+38\ 04\ 29$	-356	-0.04
0056.4 + 3804	$00\ 59\ 16+38\ 20\ 13$	-13	0.74
0057.4 + 7437	010101 + 745314	-1104	-0.70
0057.5 + 3459	$01\ 00\ 20+35\ 15\ 21$	-886	-1.71
0057.6 + 5257	010036+531360	-1418	0.77
0057.7 + 4835	$01\ 00\ 40+48\ 51\ 37$	-2005	0.09
0057.9 + 7440	010134 + 745703	-1382	-0.61
0058.5 + 4439	$01\ 01\ 24+44\ 55\ 19$	-1253	-0.68
0058.7 + 3846	010133 + 390223	32	-0.18
$0059.1+3129\mathrm{B}$	$01\ 01\ 55+31\ 46\ 05$	-1158	-0.98
0059.1 + 5601	010209 + 561759	-3200	-0.83
0059.7 + 3459	$01\ 02\ 33+35\ 15\ 26$	-83	-0.90
0059.8 + 4624	$01\ 02\ 42 + 46\ 40\ 10$	-440	-0.32
0059.8 + 7518	010334 + 753453	-916	-1.05
0100.1 + 4557	010259+461321	-189	-1.27
0100.2 + 5416	010316 + 543254	-1810	-0.37
0100.3 + 3739	010311 + 375542	-1578	0.20
0101.0 + 3310	010350+332701	-617	-1.53
0101.2 + 3130	010360 + 314634	-1073	-1.19
0102.0 + 4638	$01\ 04\ 55+46\ 54\ 25$	-241	0.21
0102.9 + 3113	010543 + 313002	-542	-0.77
0103.0 + 3107	010551 + 312355	-1050	-1.05
0103.9 + 3628	$01\ 06\ 43+36\ 44\ 11$	723	-0.89
0104.1 + 4511	$01\ 07\ 04 + 45\ 27\ 13$	820	-0.36
0104.5 + 4900	$01\ 07\ 27+49\ 16\ 17$	-1029	-0.36
0104.6 + 3331	$01\ 07\ 25+33\ 47\ 02$	-405	-0.69
0105.7 + 3049	$01\ 08\ 31+31\ 05\ 52$	-767	-1.29
0105.8 + 4203	$01\ 08\ 40 + 42\ 19\ 45$	-1547	-0.62
0105.8 + 4500	$01\ 08\ 45+45\ 16\ 23$	1079	-1.44
0105.9 + 5019	$01\ 08\ 52+50\ 35\ 31$	-1200	-1.19
$0107.3 + 4141^p$	$01\ 10\ 12 + 41\ 57\ 54$	-900	-0.90
0108.6 + 4741	$01\ 11\ 34 + 47\ 57\ 18$	-498	-1.50
0108.8 + 3251	$01\ 11\ 40 + 33\ 07\ 10$	526	-0.91
0109.1 + 2934	$01\ 11\ 52 + 29\ 50\ 44$	-1956	-0.39
0109.4 + 3907	$01\ 12\ 16+39\ 23\ 18$	-812	-0.80
0109.5 + 4948	$01\ 12\ 30+50\ 03\ 55$	-1537	-0.94
0110.0 + 4626	$01\ 13\ 00\ +\ 46\ 42\ 18$	-1163	-1.15
0110.4 + 4403	$01\ 13\ 19+44\ 19\ 03$	161	-0.94
0110.4 + 5055	$01\ 13\ 26+51\ 11\ 30$	827	-1.07

Таблица 2. (Продолжение)

Имя WENSS,	RA + Dec	δT ,	Sn In
WNB	hh mm ss + dd mm ss	$10^{-6}{ m K}$	3p.m.
(1)	(2)	(3)	(4)
0112.2 + 6057	$01\ 15\ 26+61\ 13\ 15$	-500	-0.64
0113.5 + 3050	$01\ 16\ 19+31\ 06\ 33$	-1036	-0.88
0115.1 + 3936	$01\ 18\ 01 + 39\ 52\ 02$	-662	-0.96
0115.5 + 2953	$01\ 18\ 17+30\ 08\ 53$	-227	-1.20
0115.6 + 4904	$01\ 18\ 40 + 49\ 19\ 52$	-558	-0.32
0115.8 + 4415	$01\ 18\ 46 + 44\ 30\ 60$	-323	-0.95
0116.3 + 5015	$01\ 19\ 20+50\ 31\ 04$	-332	-0.46
0116.7 + 4008	$01\ 19\ 37+40\ 24\ 00$	-484	-0.40
0117.1 + 3332	$01\ 19\ 56+33\ 48\ 09$	-388	-0.96
0117.2 + 4848	$01\ 20\ 13 + 49\ 03\ 56$	-1595	-0.41
$0117.2 + 5216^p$	$01\ 20\ 21 + 52\ 32\ 15$	-587	-0.91
0117.6 + 3753	$01\ 20\ 28 + 38\ 09\ 30$	13	-0.98
0117.6 + 4841	$01\ 20\ 41 + 48\ 57\ 35$	-1742	-0.83
0117.9 + 3919	$01\ 20\ 47 + 39\ 35\ 33$	-413	-0.91
0118.4 + 5629	$01\ 21\ 36+56\ 44\ 44$	-259	-0.72
0118.5 + 4803A	$01\ 21\ 28 + 48\ 18\ 45$	-1445	-0.87
0118.5 + 4803B	$01\ 21\ 34+48\ 18\ 53$	-900	-1.26
0118.6 + 4503	$01\ 21\ 36+45\ 19\ 08$	-1520	-1.33
0119.0 + 4508	$01\ 22\ 01 + 45\ 23\ 51$	-2283	-0.03
0120.4 + 3046	$01\ 23\ 12 + 31\ 02\ 19$	647	-0.06
0120.5 + 4335	$01\ 23\ 30+43\ 51\ 30$	-1684	-0.70
0120.9 + 3738	$01\ 23\ 49 + 37\ 53\ 60$	-1352	-0.33
0121.1 + 3626	$01\ 23\ 59+36\ 41\ 53$	-1975	-0.10
0121.1 + 3713	$01\ 24\ 01 + 37\ 28\ 57$	239	-1.42
$0122.3 + 3256^s$	$01\ 25\ 11+33\ 11\ 57$	-1776	-0.40
0122.3 + 3655	$01\ 25\ 12 + 37\ 11\ 04$	-414	-0.09
$0122.5 + 3955^p$	$01\ 25\ 25\ +\ 40\ 11\ 28$	1138	0.23
0123.0 + 4240	$01\ 26\ 01 + 42\ 56\ 22$	463	-0.92
0123.2 + 5028	$01\ 26\ 21 + 50\ 43\ 40$	165	0.19
$0124.0 + 3232^s$	$01\ 26\ 51 + 32\ 48\ 06$	-1430	-0.83
0124.7 + 7158	$01\ 28\ 37+72\ 14\ 27$	-823	-1.21
0125.7 + 3109	$01\ 28\ 37+31\ 24\ 49$	-491	-0.27
0126.0 + 2902	$01\ 28\ 50\ +\ 29\ 17\ 59$	-1983	-0.95
$0126.2 + 3542^p$	$01\ 29\ 08 + 35\ 58\ 06$	-1893	-0.71
0127.1 + 3616	$01\ 30\ 01 + 36\ 31\ 36$	248	0.20
0127.1 + 4117	$01\ 30\ 05 + 41\ 32\ 35$	-1506	-1.14
0127.9 + 4047	$01\ 30\ 54 + 41\ 03\ 23$	-817	-0.53
0128.4 + 4321	$01\ 31\ 24 + 43\ 37\ 07$	-87	-1.09
$0129.0 + 4804^s$	$01\ 32\ 07 + 48\ 20\ 14$	-2118	-0.43
0129.1 + 4330	$01\ 32\ 06 + 43\ 45\ 35$	-913	-0.37
0130.2 + 3404	$01\ 33\ 09 + 34\ 20\ 08$	-883	-0.90
0131.2 + 7049	013504 + 710456	-353	-0.82
0132.0 + 4036	$01\ 34\ 60 + 40\ 52\ 05$	499	-0.71
0132.5 + 4058	013532 + 411415	-466	-0.51

Таблица 2. (Продолжение)

Имя WENSS.	RA + Dec	δT .	0.1
WNB	hh mm ss + dd mm ss	10 ⁻⁶ K	Sp.In.
(1)	(2)	(3)	(4)
$0132.6 + 2948^s$	$01\ 35\ 30+30\ 03\ 55$	-897	-0.05
0133.5 + 4137	$01\ 36\ 33+41\ 52\ 39$	-802	-0.56
0134.0 + 2959	$01\ 36\ 54+30\ 14\ 32$	-991	-1.03
0134.8 + 3729	$01\ 37\ 47+37\ 44\ 23$	-1919	0.56
0135.0 + 4413	$01\ 38\ 02+44\ 28\ 56$	-967	-1.01
0135.4 + 4403	$01\ 38\ 27+44\ 18\ 39$	232	-1.63
$0136.9 + 3343^s$	$01\ 39\ 49 + 33\ 58\ 39$	-1594	-1.34
0137.3 + 5149	$01\ 40\ 28+52\ 04\ 44$	-90	-1.19
0137.7 + 3534	$01\ 40\ 40\ +\ 35\ 49\ 39$	-1961	-1.16
0137.7 + 7353	$01\ 41\ 60+74\ 08\ 47$	-2762	-0.23
0139.3 + 4144	$01\ 42\ 22 + 41\ 59\ 14$	-697	-0.17
0139.6 + 4236	$01\ 42\ 38+42\ 51\ 42$	-61	-1.32
0139.9 + 4421	$01\ 42\ 56+44\ 36\ 58$	-312	-1.58
0140.2 + 5158	$01\ 43\ 25+52\ 13\ 16$	-559	-1.24
0140.3 + 4144	$01\ 43\ 17+41\ 59\ 27$	186	-0.98
0141.6 + 3235	$01\ 44\ 32+32\ 50\ 57$	-675	-1.03
0143.1 + 3644	$01\ 46\ 06+36\ 59\ 13$	-1818	-0.90
0143.1 + 4926	$01\ 46\ 19+49\ 41\ 53$	-550	-0.96
0143.3 + 3219	$01\ 46\ 12+32\ 34\ 50$	-1416	-0.41
0143.3 + 4551	$01\ 46\ 27+46\ 06\ 19$	-1407	-0.60
0143.4 + 4846	$01\ 46\ 36+49\ 01\ 52$	-1632	-1.49
0143.5 + 4154	$01\ 46\ 34+42\ 09\ 16$	745	-0.50
0143.9 + 3641	$01\ 46\ 56\ +\ 36\ 56\ 46$	-1818	-0.60
0143.9 + 4555	$01\ 47\ 02 + 46\ 09\ 58$	-1599	-0.69
0143.9 + 5506	$01\ 47\ 15+55\ 21\ 27$	-980	-0.88
0144.0 + 3646	$01\ 47\ 01 + 37\ 01\ 36$	-2056	-1.01
0144.1 + 5503	$01\ 47\ 28+55\ 18\ 48$	-972	0.05
0144.8 + 7026	$01\ 48\ 51+70\ 41\ 16$	-198	-1.95
0145.2 + 5001	$01\ 48\ 23+50\ 16\ 26$	-711	-0.87
0145.9 + 4006	$01\ 48\ 58+40\ 21\ 35$	-1025	0.43
0146.3 + 3248A	$01\ 49\ 13 + 33\ 05\ 34$	219	-1.26
0146.3 + 3248B	$01\ 49\ 16+33\ 02\ 51$	49	-0.71
0150.2 + 3104	$01\ 53\ 07+31\ 18\ 48$	-756	-0.64
0150.4 + 2920	$01\ 53\ 20+29\ 35\ 43$	579	-0.49
0150.4 + 3124	$01\ 53\ 22 + 31\ 39\ 25$	-1384	-0.82
0150.9 + 4148	$01\ 53\ 60\ +\ 42\ 03\ 07$	-545	-0.84
0151.4 + 4857	$01\ 54\ 39+49\ 11\ 55$	-1997	-1.27
0152.1 + 4938	$01\ 55\ 18+49\ 53\ 05$	922	-0.49
0152.3 + 4707	$01\ 55\ 29 + 47\ 22\ 04$	-1190	-1.01
0152.3 + 6508	$01\ 56\ 07+65\ 22\ 60$	-1671	-0.94
0153.0 + 3224	$01\ 55\ 55\ +\ 32\ 39\ 16$	-82	-0.19
0153.5 + 3100	$01\ 56\ 24 + 31\ 14\ 52$	-223	-1.22
0153.8 + 3212	$01\ 56\ 44 + 32\ 27\ 30$	-450	-0.53
0154.4 + 4210	$01\ 57\ 32+42\ 24\ 49$	-188	-0.64

Таблица 2. (Продолжение)

Имя WENSS,	RA + Dec	δT ,	Sp Ip
WNB	hh mm ss + dd mm ss	$10^{-6}{ m K}$	5 p.m.
(1)	(2)	(3)	(4)
0155.3 + 4342	$01\ 58\ 26+43\ 57\ 28$	147	-0.78
0156.1 + 3103	$01\ 59\ 01 + 31\ 18\ 11$	-127	-0.42
0157.0 + 3537	$02\ 00\ 02 + 35\ 52\ 28$	407	-0.44
0157.1 + 5225	$02\ 00\ 24+52\ 40\ 21$	-330	-0.57
0157.1 + 5338	$02\ 00\ 29+53\ 52\ 55$	803	-1.76
0157.3 + 5227	$02\ 00\ 40+52\ 42\ 13$	-396	-1.52
0158.0 + 3131	$02\ 00\ 56+31\ 46\ 15$	-622	-1.09
0158.1 + 3513	020109 + 352815	-287	-0.97
0158.2 + 3138	$02\ 01\ 07+31\ 52\ 49$	-831	-0.18
0158.4 + 3715	$02\ 01\ 28+37\ 30\ 01$	-190	-0.86
0158.6 + 3137	020136 + 315132	-709	-0.51
0158.6 + 3510	020136 + 352446	-190	-0.80
0159.0 + 4311	$02\ 02\ 11+43\ 25\ 33$	-123	-0.64
0159.1 + 3822	$02\ 02\ 10+38\ 36\ 60$	-718	-1.33
0159.7 + 2915	$02\ 02\ 37+29\ 30\ 02$	-977	-1.26
0159.7 + 3833A	$02\ 02\ 45+38\ 47\ 14$	-190	-1.07
$0159.7+3833\mathrm{B}$	$02\ 02\ 47+38\ 50\ 07$	-100	-0.29
0159.7 + 4113	020247 + 412752	-1119	-0.97
0159.8 + 3741	020253 + 375619	-514	-0.20
0159.9 + 3838	020256 + 385238	210	-0.52

Таблица 2. (Продолжение)

5. ЗАКЛЮЧЕНИЕ

Таким образом, можно отметить, что проблема неполноты каталогов решается при помощи новых алгоритмов и программ, чувствительных к топологическим, статистическим и спектральным характеристикам многочастотных карт космических миссий.

В данной работе для поиска новых C3-объектов мы применили естественный подход, основанный на соотношении сигналов в миллиметровом и субмиллиметровом диапазонах, но в направлении на радиоисточники, которые могут являться признаками существования скоплений галактик. Для анализа мы использовали данные по радиоисточникам каталога WENSS в диапазоне прямых восхождений $0^{\rm h} \leq \alpha < 2^{\rm h}$ и склонений $28^{\circ} < \delta < 76^{\circ}$ на эпоху каталога, содержащего астрометрическую (координаты) и астрофизическую (плотности потока на частоте 325 МГц) информацию, для 16 364 объектов.

После автоматической процедуры селекции потенциальных кандидатов были отобраны 1778 объектов (9.9% от общего списка), из которых с помощью визуальной инспекции был выделен 381 источник (2.1% от общего списка) с наиболее типичными признаками наличия эффекта. Любопытно отметить, что метод позволил обнаружить

21 из 28 источников Planck, которые вошли в соответствующий каталог миссии, а визуальный контроль, основанный на оценке контраста эффекта, оставил шесть из них. Отметим, что список объектов, не представленных в данной работе изза «зашумленности» карты флуктуациями СМВ, содержится в дополнительном каталоге у авторов статьи. Предварительные оценки показывают, что количество объектов с эффектом Сюняева-Зельдовича при тщательном анализе карт микроволнового фона может возрасти до десятков тысяч, что в несколько раз превышает число объектов, полученное по отождествлениям с обзорами SDSS и WISE [42]. Важно отметить, что предложенный метод поиска скоплений галактик с СЗ-эффектом по радиоисточникам также сделает возможным поиск похожих объектов с большими красными смещениями (z > 1), которые не видны в [42] в силу селекционных эффектов.

Отобранные источники в дальнейшим могут быть использованы для оптического исследования окружения, оценок массы и других космологических свойств для проверок следствий стандартной космологической модели. Кроме того, новые списки протяженных радиоисточников в микроволновом диапазоне дают новую информацию для учета при моделировании распределения протяженных радиоисточников на полной сфере [43]. Исследования окружения радиоисточников каталога WENSS других диапазонов прямых восхождений, а также других радиоастрономических обзоров, продолжаются.

БЛАГОДАРНОСТИ

Авторы выражают благодарность рецензенту за полезные замечания, которые привели к коррекции текста и улучшению его понимания. Также авторы признательны ESA за открытый доступ к результатам наблюдений и обработки данных в Planck Legacy Archive. При построении непрерывных радиоспектров применялась база данных радиоастрономических каталогов CATS [44, 45]. В работе использованы система обработки радиоастрономических данных FADPS [39, 46] и пакет GLESP [34, 35, 47] для анализа протяженного излучения на сфере.

СПИСОК ЛИТЕРАТУРЫ

- C. L. Bennett, D. Larson, J. L. Weiland, et al., Astrophys. J. Suppl. 208, 20 (2013).
- 2. R. Adam et al. (Planck Collab.), Astron. and Astrophys. **594**, A1 (2016).
- C. P. Ahn et al. (SDSS-III Collab.), Astrophys. J. Suppl. 203, 21 (2012).
- K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., Astrophys. J. Suppl. 182, 543 (2009).
- 5. Y. B. Zeldovich and R. A. Sunyaev, Astrophys. and Space Sci. 4, 301 (1969).
- 6. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. **594**, A24 (2016).
- 7. K. Vanderlinde, T. M. Crawford, T. de Haan, et al., Astrophys. J. **722**, 1180 (2010).
- 8. M. Hasselfield, M. Hilton, T. A. Marriage, et al., J. Cosmo. AstroPart. Phys. 7, 008 (2013).
- 9. G. Blumenthal and G. Miley, Astron. and Astrophys. **80**, 13 (1979).
- 10. M. L. Khabibullina and O. V. Verkhodanov, Astrophysical Bulletin **64**, 123 (2009).
- 11. O. V. Verkhodanov and Y. N. Parijskij, *Radio Galaxies and Cosmology* (Fizmatlit, Moscow, 2009)[in Russian].
- 12. Y. N. Parijskij, W. M. Goss, A. I. Kopylov, et al., Bull. Spec. Astrophys. Obs. **40**, 5 (1996).
- C. De Breuck, W. van Breugel, H. J. A. Röttgering, and G. Miley, Astron. and Astrophys. Suppl. 143, 303 (2000).
- 14. B. P. Venemans, H. J. A. Röttgering, G. K. Miley, et al., Astron. and Astrophys. **461**, 823 (2007).
- 15. T. V. Keshelava and O. V. Verkhodanov, Astrophysical Bulletin **70**, 257 (2015).
- 16. R. B. Rengelink, Y. Tang, A. G. de Bruyn, et al., Astron. and Astrophys. Suppl. **124**, 259 (1997).
- 17. P. A. R. Ade et al. (Planck Collaboration), Astron. and Astrophys. **571**, A1 (2014).

- 18. P. A. R. Ade et al. (Planck Collaboration), Astron. and Astrophys. **594**, A26 (2016).
- 19. R. A. Sunyaev and Y. B. Zeldovich, Comments Astrophysics Space Physics 4, 173 (1972).
- R. A. Sunyaev and Y. B. Zeldovich, Monthly Notices Royal Astron. Soc. **190**, 413 (1980).
- 21. K. K. Schaffer, T. M. Crawford, K. A. Aird, et al., Astrophys. J. **743**, 90 (2011).
- 22. P. A. R. Ade et al. (Planck Collaboration), Astron. and Astrophys. **571**, A21 (2014).
- 23. P. A. R. Ade et al. (Planck Collaboration), Astron. and Astrophys. **571**, A20 (2014).
- 24. O. V. Verkhodanov, E. K. Maiorova, O. P. Zhelenkova, et al., Astronomy Reports **60**, 630 (2016).
- 25. L. I. Gurvits, K. I. Kellermann, and S. Frey, Astron. and Astrophys. **342**, 378 (1999).
- O. V. Verkhodanov, Y. N. Parijskij, and A. A. Starobinsky, Bull. Spec. Astrophys. Obs. 58, 5 (2005).
- 27. A. I. Kopylov, W. M. Goss, Y. N. Pariĭskiĭ, et al., Astronomy Letters **32**, 433 (2006).
- Y. N. Parijskij, P. Thomasson, A. I. Kopylov, et al., Monthly Notices Royal Astron. Soc. 439, 2314 (2014).
- 29. O. V. Verkhodanov, D. I. Solovyov, O. S. Ulakhovich, and M. L. Khabibullina, Astrophysical Bulletin **71**, 139 (2016).
- 30. O. V. Verkhodanov, D. I. Solovyov, O. S. Ulakhovich, et al., Astronomy Reports **61**, 297 (2017).
- 31. E. Bertin and S. Arnouts, Astron. and Astrophys. Suppl. **117**, 393 (1996).
- 32. P. D. Naselsky, P. R. Christensen, P. Coles, et al., Astrophysical Bulletin **65**, 101 (2010).
- 33. R. Adam et al. (Planck Collaboration), Astron. and Astrophys. **594**, A10 (2016).
- A. G. Doroshkevich, P. D. Naselsky, O. V. Verkhodanov, et al., Intern. J. Modern Physics D 14, 275 (2005).
- 35. O. V. Verkhodanov, A. G. Doroshkevich, P. D. Naselsky, et al., Bull. Spec. Astrophys. Obs. 58, 40 (2005).
- 36. R. J. Hanisch, A. Farris, E. W. Greisen, et al., Astron. and Astrophys. **376**, 359 (2001).
- 37. O. V. Verkhodanov, Y. V. Naiden, V. N. Chernenkov, and N. V. Verkhodanova, Astrophysical Bulletin **69**, 113 (2014).
- O. V. Verkhodanov, in Proc. 27th Radio Astronomical Conf. on Problems of Modern Radio Astronomy (Inst. Appl. Astronomy RAS, St.-Petersburg, 1997), Vol. 1, p. 322 [in Russian].
- 39. O. V. Verkhodanov, ASP Conf. Ser. 125, 46 (1997).
- 40. P. A. R. Ade et al. (Planck Collaboration), Astron. and Astrophys. **594**, A27 (2016).
- 41. Z. L. Wen, J. L. Han, and F. S. Liu, Astrophys. J. Suppl. **199**, 34 (2012).
- 42. R. A. Burenin, Astronomy Letters 43, 507 (2017).
- 43. D. I. Solovyov and O. V. Verkhodanov, Astrophysical Bulletin **72**, 217 (2017).
- 44. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Bull. Spec. Astrophys. Obs. **58**, 118 (2005).

- 45. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Data Science J. **8**, 34 (2009).
- 46. O. V. Verkhodanov, B. L. Erukhimov, M. L. Monosov, et al., Bull. Spec. Astrophys. Obs. **36**, 132 (1993).
- 47. A. G. Doroshkevich, O. V. Verkhodanov,P. D. Naselsky, et al., Intern. J. Modern Physics D 20, 1053 (2011).

Search for Candidate Objects with the Sunyaev–Zeldovich Effect in the Radio Source Vicinities

O. V. Verkhodanov, N. V. Verkhodanova, O. S. Ulakhovich, D. I. Soloviev, and M. L. Khabibullina

Based on the data from the Westerbork Northern Sky Survey performed at a frequency of 325 MHz in the range of right ascensions $0^{\rm h} \leq \alpha < 2^{\rm h}$ and declinations $29^{\circ} < \delta < 78^{\circ}$ and using multi-frequency Planck maps, we selected candidate objects with the Sunyaev–Zeldovich effect. The list of the most probable candidates includes 381 sources. It is shown that the search for such objects can be accelerated by using a priori data on the negative level of fluctuations in the CMB map with remote low multipoles in the direction to radio sources.

Keywords: radio continuum: galaxies—cosmic background radiation