УДК 524.72-52

ЗВЕЗДООБРАЗОВАНИЕ В БЛИЗКИХ КАРЛИКОВЫХ ГАЛАКТИКАХ

© 2019 С. С. Кайсин^{*}, И. Д. Караченцев

Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия Поступила в редакцию 30 июля 2018 года; после доработки 12 декабря 2018 года; принята к публикации 12 декабря 2018 года

Представлены измеренные потоки и изображения в эмиссионной линии $H\alpha$ для 66 близких объектов, наблюдавшихся на 6-метровом телескопе БТА САО РАН. Три из них: IC 2233, UGC 4704, NGC 3432 — являются спиральными галактиками поздних типов, шесть относятся к удаленным шаровым скоплениям M31, а остальные являются карликовыми галактиками. Измеренные $H\alpha$ -потоки использованы для оценки интегральных и удельных темпов звездообразования. На выборке из более 500 галактик Местного объема рассмотрены некоторые основные особенности звездообразования у карликовых галактик и спиралей поздних типов.

Ключевые слова: галактики: карликовые — галактики: звездообразование

1. ВВЕДЕНИЕ

На протяжении последней декады в САО РАН ведутся наблюдения близких галактик с целью определения их темпа звездообразования (SFR) по потоку в эмиссионной бальмеровской линии $H\alpha$. Объектами $H\alpha$ -обзора являются галактики Местного объема (LV) с расстояниями в пределах 11 Мпк. Результаты наших предыдущих наблюдений представлены в серии девяти статей, ссылки на которые содержатся в последней из них [1].

Благодаря массовым обзорам неба в оптическом диапазоне и в линии нейтрального водорода 21 см количество известных галактик LV быстро возрастает. В сводке "Updated Nearby Galaxy Catalog" (UNGC) [2] их число достигло 869, среди которых карликовые галактики со звездными массами $lg(M^*/M_{\odot}) < 9.0$ составляют более 80% выборки. На середину 2018 года база данных о галактиках LV [3] насчитывает 1153 объекта¹. Всего по нашей программе На-обзора на 6-метровом телескопе БТА были получены На-изображения более 300 близких галактик. В сочетании с другими аналогичными обзорами [4-6] сводка данных о галактиках LV с измеренными На-потоками превысила 500 объектов. У большинства из них измерены ультрафиолетовые потоки на космическом телескопе GALEX [7], что позволяет оценивать темп звездообразования в галактиках на шкале времени приблизительно 100 млн. лет, на порядок более продолжительный, чем по эмиссии в линии $H\alpha$. Сравнение значений $SFR_{H}\alpha$ и SFR_{FUV} дает возможность выявить у галактик эпизоды вспышки и угасания темпа звездообразования, происходящих на интервалах времени примерно 10-100 млн лет.

Ниже мы приводим $H\alpha$ -изображения и значения интегральных $H\alpha$ -потоков для 66 объектов LV. Из них почти все являются карликовыми галактиками, кроме трех спиралей позднего типа: IC 2233, UGC 4704, NGC 3432 и шести шаровых скоплений на далекой (более 100 кпк) периферии туманности Андромеды, M 31. Только у шести галактик этого списка $H\alpha$ -потоки были измерены ранее, причем в трех случаях (JKB 83, Grapes и NGC 6503-d1) мы обнаружили грубые ошибки в прежних оценках $H\alpha$ -потока, превышающие порядок величины.

2. НАБЛЮДЕНИЯ И ОБРАБОТКА ДАННЫХ

Наблюдения близких карликовых галактик проводились на 6-м телескопе САО РАН в 2015–2018 гг. с помощью фокального редуктора SCORPIO [8]. Регистрация изображений галактик осуществлялась ССD-матрицей размером 2048×2048 пикселей, которая обеспечивала поле зрения 6.'1 × 6.'1 с разрешением 0.".18 пиксель⁻¹. Изображения галактик в линии Н α и в соседнем континууме были получены с применением узкополосного интерференционного фильтра Н α с шириной $\Delta \lambda = 74$ Å и эффективной длиной волны $\lambda_{\text{eff}} = 6555$ Å, а также двух среднеполосных фильтров SED 607 с $\Delta \lambda = 167$ Å, $\lambda_{\text{eff}} = 6063$ Å и SED 707 с $\Delta \lambda = 207$ Å, $\lambda_{\text{eff}} = 7063$ Å. Типичное время экспозиции составляло 2×600 с в линии Н α

^{*}E-mail: skai@sao.ru

¹Разнообразные сведения о них содержатся по адресу http://www.sao.ru/lv/lvgdb

Рис. 1. Атлас изображений объектов Местного объема. Левые изображения в каждой паре представляют сумму экспозиций в линии Нα и в континууме, а правые изображения соответствуют их разности. Угловой масштаб и ориентация указаны на правых снимках. Здесь мы приводим только первую страницу рисунка. Полностью файл со всеми изображениями доступен по следующей ссылке https://www.sao.ru/hq/leac/recent_results/Halpha_atlas_66.pdf.

и 2×300 с в континууме. Из-за небольшого диапазона лучевых скоростей у близких галактик их Н α -изображения экспонировались нами с одним и тем же фильтром. Лучевые скорости изучаемых объектов лежат в диапазоне от -333 км с⁻¹ для PAndAS-01 и до 844 км с⁻¹ для UGCA 298.

Обработка наблюдательных данных осуществлялась стандартным образом с помощью пакета MIDAS. После вычитания кадра электронного нуля проводилась нормировка на плоские поля, которые получались по снимкам неба в сумеречное время. Затем исключались следы космических частиц, осуществлялось совмещение полученных снимков и вычитание континуума, нормированного по изображениям 5-15 звезд в поле кадра. Измеряемые интегральные На-потоки галактик калибровались по снимкам звездных спектрофотометрических стандартов, получаемых в ту же ночь. Типичные внутренние ошибки измерения На-потока составляли около 15%. Основной вклад в ошибку вносили изменения атмосферных условий. Полученные На-потоки включали в себя также вклад эмиссионных линий дублета [N II], который в случае карликовых галактик был невелик, и мы пренебрегли им, только для трех спиралей позднего типа измеренные потоки были исправлены за вклад дублета [N II], согласно [9].

3. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

Изображения наблюдавшихся нами галактик представлены в виде атласа на рис. 1. Левые и

правые изображения каждой галактики соответствуют сумме и разности снимков, сделанных в Н α и в континууме. Угловой размер снимков составляет 4' × 4', направления на север и восток указаны стрелками. На некоторых снимках заметен интерференционный узор, обусловленный несовершенством процедуры деления на плоское поле. Яркие звезды, а также объекты с аномальным цветом видны на правых изображениях как остаточные «пеньки». Измеренный интегральный поток галактики в линии Н α , $F(H\alpha)$ в единицах эрг см⁻² с исправлялся нами за галактическое поглощение, согласно [10]. Исправленное его значение $F_c(H\alpha)$ служило для оценки интегрального темпа звездообразования галактики [11] в единицах (M_{\odot} год⁻¹):

$$\lg(SFR) = \lg F_c(\mathrm{H}\alpha) + 2\lg D + 8.98, \quad (1)$$

где D — расстояние до галактики в Мпк. Здесь мы пренебрегли вкладом в поток эмиссионного дублета [N II], а также внутренним поглощением в галактике, поскольку оба этих эффекта невелики для карликовых галактик [12], составляющих большинство среди наблюдавшихся объектов. Исключение составили три спиральные галактики: IC 2233, UGC 4704 и NGC 3432, видимые с «ребра», для которых величина внутреннего поглощения в линии Н α принята равной соответственно 0^m73, 0^m40 и 0^m77, по схеме [13].

Name	RA (2000) Dec	B_T ,	T	<i>D</i> ,	lo Fue	$\lg SFR_{\mathrm{H}\alpha},$	$\lg SFR_{\rm FUV},$	$\lg sSFR_{\mathrm{H}\alpha},$
Hume	1(11(2000))Dec	mag		Мрс	¹ 8 ¹ Πα	$[M_{\odot}{\rm yr}^{-1}]$	$[M_{\odot}{ m yr}^{-1}]$	$[yr^{-1}]$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
PAndAS-03	000356.4+405319	21.3	-3	0.78	< -15.10	< -6.26	< -6.35	< -10.64
PAndAS-05	000524.1+435535	20.3	-3	0.78	< -15.30	< -6.46	< -6.38	< -11.21
Pisces A	001446.0+104847	18.5	10	5.65	-14.25	-3.67	—	-10.20
JKB 129	002041.4+083701	17.4	10	7.50	-13.87	-3.03	-2.69	-10.27
PAndAS-50	010150.6+481819	19.3	-3	0.78	< -15.12	< -6.21	< -6.10	< -11.49
Pisces B	011911.7+110718	17.8	10	8.91	-13.94	-3.02	-2.80	-10.13
PAndAS-55	011920.4+460312	20.0	-3	0.78	< -15.16	< -6.33	< -6.40	< -11.20
AGC 112454	013259.7+142224	17.5	9	10.20	-13.39	-2.35	_	-9.70
AGC 114027	013441.8+143840	18.8	10	9.90	-13.87	-2.85	_	- 9.66
AGC 112503	013800.3+145858	18.0	9	10.20	-13.61	-2.57	_	-9.72
N 672dw B	014711.1+274100	21.0	10	7.20	<-15.24	< -4.48	< -4.46	< -10.17

Таблица 1. Основные параметры наблюдавшихся галактик

ҚАЙСИН, ҚАРАЧЕНЦЕВ

Таблица 1. (Продолжение)

Name	RA (2000) Dec	B_T ,	Т	<i>D</i> ,	lo Fu	$\lg SFR_{\mathrm{H}\alpha},$	$\lg SFR_{\rm FUV},$	$\lg sSFR_{\mathrm{H}\alpha},$
	1(11(2000)) Dee	mag	1	Мрс	-8 - Ηα	$[M_\odot{\rm yr}^{-1}]$	$[M_{\odot}{ m yr}^{-1}]$	$[yr^{-1}]$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
N 672dw A	014719.1+271516	19.8	10	7.20	< -15.21	< -4.44	-4.48	< -10.62
Triangulum–II	021317.4+361042	16.5	-2	0.03	< -15.17	< -9.16	_	< -12.61
AGC 123352	024839.2+231626	19.2	10	8.27	-14.01	-3.00	-3.28	-9.77
AGC 124056	025736.4+234721	19.0	10	7.37	< -15.20	< -4.36	< -4.23	< -10.98
N 1156dw 1	030018.2+251456	19.6	10	7.80	< -15.11	< -4.10	< -3.76	< -10.75
N 1156dw 2	030028.0+251817	20.0	10	7.80	< -15.25	< -4.23	-3.21	< -10.74
GALFA-Dw4	054544.8+104616	17.8	10	7.22	-13.24	-2.05	_	- 9.81
MADCASH	074238.9+652502	20.5	-2	3.39	< -15.26	< -5.19	< -5.26	< -11.05
IC 2233	081358.9+454432	13.1	7	12.20	-12.11	-0.75	-0.26	-9.97
LV J0831+4104	083141.2+410454	17.7	9	7.90	-15.25	-4.44	-3.26	-11.46
LV J0843+4025	084338.0+402547	17.9	9	7.80	-13.89	-3.10	-2.99	-10.02
N 2683dw 2	085420.5+331458	19.6	-2	9.82	< -15.28	< -4.29	< -4.34	< -11.43
UGC 04704	085900.3+391236	15.0	8	15.20	-12.84	-1.38	-0.89	-10.31
AGC 198507	091525.8+252510	18.6	9	8.90	-15.01:	-4.10:	-3.20	-10.87:
JKB 83	095549.6+691957	19.7	10	3.70	-13.67	-3.49	-4.24	- 9.14
PGC 30114	101843.0+460244	15.7	8	8.05	-12.54	-1.74	-1.88	- 9.63
UGC 05571	101942.4+520356	16.5	9	8.24	-13.39	-2.57	-2.24	-10.06
LV J1028+4240	102833.0+424008	17.4	10	7.55	-14.13	-3.38	-2.67	-10.44
PGC 2277751	103512.1+461412	17.4	9	7.25	-14.57	-3.85	-3.15	-10.90
N 3344dw 1	104244.0+250130	20.0	10	9.82	< -15.30	< -4.31	< -4.33	< -10.60
Willman 1	104921.0+510300	16.0	-2	0.04	< -15.22	< -9.03	-8.51	< -12.75
NGC 3432	105231.1+363708	11.7	8	9.20	-11.24	-0.15	-0.00	-9.79
LV J1052+3639	105240.8+363954	15.8	10	9.20	-12.86	-1.94	-2.01	- 9.82
HS 1053+3624	105640.4+360828	17.8	10	9.20	-13.51	-2.58	-2.54	-9.69
VV 747	105747.0+361539	15.5	10	9.20	-12.63	-1.70	-1.85	- 9.72
PGC 034671	111948.6+554322	16.5	9	9.90	-14.22	-3.24	-2.81	-10.91
UGC 06757	114659.1+612006	16.3	10	4.61	-14.12	-3.78	-3.02	-10.90
Grapes	115205.6+544732	18.5	10	5.58	-14.63	-4.15	_	-10.51
PGC 3401153	115352.4+512938	17.5	9	7.79	-14.63	-3.85	-3.06	-10.90
MAPS 1206+31	120634.5+312033	15.8	8	7.43	-13.78	-3.04	-2.97	-10.85
UGC 07320	121728.5+444841	15.4	10	9.20	-13.87	-2.95	-2.61	-10.99
KK 135	121934.7+580234	18.1	10	4.46	-13.84	-3.54	-3.36	-9.86

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 74 № 1 2019

		B_T .	_	<i>D</i> ,		lg SFR _H _c .	$\lg SFR_{\rm FUV}.$	$\lg sSFR_{H\alpha}.$
Name	RA (2000) Dec	mag	Т	Mpc	$\lg F_{\mathrm{H}lpha}$	$[M_{\odot} \text{ yr}^{-1}]$	$[M_{\odot} \mathrm{yr}^{-1}]$	[yr ⁻¹]
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
PGC 5059199	122409.9+261352	19.8	10	3.37	-14.59	-4.53	_	-9.97
AGC 724906	123056.0+263040	17.4	10	7.55	-15.17	-4.41	-3.18	-11.50
DDO 133	123253.0+313221	13.5	10	4.88	-12.36	-1.98	-1.73	-10.22
PGC 041749	123352.7+393733	16.5	9	8.24	-13.46	-2.64	-2.11	-10.15
UGC 7751	123511.8+410339	16.5	9	7.90	-13.89	-3.09	-2.43	-10.58
AGC 749241	124001.7+261919	18.3	10	5.62	-15.28	-4.79	-3.54	-11.25
KDG 178	124010.0+323931	17.1	10	7.30	-14.23	-3.51	-2.64	-10.67
NGC 4656UV	124415.7+321700	13.0	10	5.40	-13.11	-2.66	-1.11	-11.20
UGCA 298	124655.4+263351	15.3	9	11.00	-12.73	-1.66	-2.23	-10.09
KKH 82	131258.7+414712	16.4	10	8.06	-15.07	-4.27	-3.55	-11.80
PGC 2229803	132753.1+434855	16.2	9	7.24	-13.90:	-3.19:	-2.89	-10.69:
LV J1328+4937	132831.2+493738	17.3	10	8.40	-13.79	-2.95	-2.54	-10.15
AGC 238890	133230.3+250725	16.6	9	6.80	-14.60	-3.94	_	-11.24
UGC 08647	133948.0+311725	16.3	8	8.60	-13.30	-2.44	-2.43	-10.18
LV J1342+4840	134220.1+484057	16.3	9	8.40	-14.21	-3.37	_	-10.97
dw1343+58	134307.0+581340	15.7	9	6.95	-13.84	-3.17	-2.56	-10.82
PGC 2448110	140457.8+534129	17.3	10	5.38	-12.59	-2.14	-3.05	-8.94
M 101-df2	140837.5+541931	19.8	-2	6.87	< -15.26	< -4.60	_	< -11.34
UGC 09540	144852.0+344243	16.8	10	9.30	-12.99	-2.05	-2.10	-9.57
NGC 6503-d1	175248.4+700814	18.6	10	6.25	-15.33	-4.73	-4.09	-11.17
Pegasus III	222422.6+052512	18.7	-2	0.21	< -15.26	< -7.52	_	< -11.83
PAndAS-01	235712.0+433308	17.9	-3	0.78	< -15.20	< -6.35	< -6.33	< -12.09
PAndAS-02	235755.6+414649	18.7	-3	0.78	< -15.20	< -6.34	< -6.28	< -11.79

Таблица 1. (Продолжение)

Сводка основных параметров наблюдавшихся галактик представлена в таблице 1. Ее столбцы содержат: (1) — имя галактики; (2) — экваториальные координаты на эпоху 2000.0; (3) — интегральную *В*-величину, (4) — морфологический тип по данным каталога UNGC [2]; (5) — расстояние в Мпк по данным [2]; (6) — логарифм измеренного нами потока в линии $H\alpha$; (7) — логарифм интегрального темпа звездообразования, согласно приведенной выше формуле; (8) — интегральный темп звездообразования галактики

$$\lg[SFR_{\rm FUV}] = \lg F_c({\rm FUV}) + 2\lg D - 6.78, \quad (2)$$

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 74 №1 2019

который определен к ее потоку в далеком ультрафиолете ($\lambda_e = 1539$ Å, FWHM = 269 Å), измеренному на спутнике GALEX [7] с поправкой за поглощение света в Галактике; (9) — удельный темп звездообразования, нормированный на единицу звездной массы галактики, взятой из каталога UNGC [2]. Несколько оценок Н α -потока, полученных сквозь циррусы, отмечены двоеточием.

4. НЕКОТОРЫЕ ОСОБЕННОСТИ НАБЛЮДАВШИХСЯ ОБЪЕКТОВ *PAndAS-03, PAndAS-05, PAndAS-50, PAndAS-55, PAndAS-01, PAndAS-02.* Шаровые скопления

на далекой периферии соседней галактики M31. Признаки звездообразования у них не детектированы как по снимкам в линии $H\alpha$, так и по FUV-потоку.

Pisces A, Pisces B. Две изолированные богатые газом карликовые галактики, обнаруженные в работе [14]. Расстояния до них по вершине ветви красных гигантов (TRGB) были измерены на HST [15].

АGC 112454. Богатая газом карликовая галактика из Н І-обзора ALFALFA [16], вероятный спутник спиральной галактики NGC 628. Эмиссионные области в AGC 112454 имеют вид двух соприкасающихся колец.

N 672A, N 672B. Два вероятных карликовых спутника галактики NGC 672, обнаруженных на снимках с длинной экспозицией на малом любительском телескопе [17].

Triangulum-II, Wilman 1, Pegasus-III. Сфероидальные карликовые спутники Milky Way, разрешенные на звезды [18–20].

AGC 124056. Богатая газом карликовая галактика низкой поверхностной яркости из обзора ALFALFA. К востоку от нее находится яркая звезда.

N 1156dw 1, N 1156dw 2. Два вероятных карликовых спутника галактики NGC 1156 [17].

GALFA-Dw4. Иррегулярная карликовая галактика из каталога компактных Н І-облаков [21].

MADCASH J0742+65. Сфероидальная ультракарликовая галактика, спутник спирали NGC 2403 [22].

IC 2233. Эта Sd галактика, видимая с ребра, имеет лучевую скорость $V_{\rm LG} = 586$ км с⁻¹ и ширину H I-линии $W_{50} = 178$ км с⁻¹. Судя по соотношению Талли-Фишера [23], ее расстояние, 12.2 Мпк, несколько больше заданного предела для Местного объема (11 Мпк). Наша оценка $\lg(SFR_{\rm H\alpha}) = -0.75$ хорошо согласуется с оценкой -0.71, сделанной ранее [6].

N 2683dw 2. Сфероидальная карликовая галактика, обнаруженная на снимке с любительским телескопом [17], вероятный спутник спирали NGC 2683.

UGC 4704. Богатая газом Sdm-галактика, видимая почти строго с ребра. Оценка ее расстояния по Tully–Fisher дает D = 15.2 Мпк. Имея лучевую скорость $V_{\rm LG} = 584$ км с⁻¹, галактика располагается в зоне Local Velocity Anomaly [24]. Наша оценка lg(*SFR*_{H α}) = -1.38 находится в хорошем согласии со значением -1.42, полученным в статье [6].

JKB 83. Межгалактическая H II-область в группе M 81. В работе [25] дается для нее $H\alpha$ -поток на порядок больше, чем поток, измеренный нами. Наши повторные снимки JKB 83 на 6-метровом телескопе подтвердили малое значение Hα-потока.

N 3344dw 1. Карликовая галактика низкой поверхностной яркости в окрестностях спирали NGC 3344.

NGC 3432=Arp 206=VV11. Sdm-галактика с искаженной структурой. В работе [6] дается Нα-поток на 0.10 dex меньше, чем наша оценка.

J1052+3639. Карликовый спутник в контакте с NGC 3432. Хорошо виден в FUV-полосе GALEX,

HS 1053+3624 и VV747. Наряду с предыдущими двумя карликами, являются вероятными спутниками NGC 3432.

Grapes. Изолированная иррегулярная карликовая галактика с лучевой скоростью $V_{\rm LG} = 408 \ {\rm km} \ {\rm c}^{-1}$ [26]. Расстояние ее оценено по $V_{\rm LG}$ при параметре Хаббла $H_0 = 73 \ {\rm km} \ {\rm c}^{-1} \ {\rm Mnk}^{-1}$. Измеренное нами значение ее Н α -потока оказалось на 1.07 dex больше, чем в работе [26].

MAPS 1206+31. Голубоватая эмиссионная галактика с мелким контрастным ядром, которое на $H\alpha$ -снимке распадается на несколько компактных узлов.

КК 135. Изолированная dIr галактика с лучевой скоростью $V_{\rm LG} = 326~{\rm km}\,{\rm c}^{-1}$, по которой определено кинематическое расстояние 4.46 Мпк. Возможный периферийный член группы M 81. В линии Н α KK 135 имеет вид незамкнутого кольца с одним эмиссионным сгущением.

РGC 5059199=АGC 749235. Мелкая голубая богатая газом карликовая галактика из обзора ALFALFA [16] с лучевой скоростью V_{LG} =246 км с⁻¹ и шириной Н І-линии $W_{50} = 98$ км с⁻¹. Ее структура не согласуется с кинематическим расстоянием 3.37 Мпк. Возможно, она относится к пекулярной группе Сота I на расстоянии примерно 16 Мпк.

DDO 133. Im-галактика на расстоянии 4.88 Мпк, измеренном по TRGB [27]. Содержит более дюжины компактных и кольцеобразных Н II-областей.

NGC 4656UV. Карликовый спутник NGC 4656, расположенный в контакте с ней с северовосточной стороны. Галактика имеет низкую поверхностную яркость в оптическом континууме и в линии $H\alpha$, но выглядит контрастно в FUV-полосе [28].

UGCA 298=Mrk 1335. Голубая компактная карликовая галактика на границе Местного объема (11.0 Мпк) с гладкой структурой и ярким эмиссионным ядром. Судя по соотношению $SFR_{\rm H\alpha}/SFR_{\rm FUV} \sim 2.7$, Mrk 1335 находится на стадии вспышечной активности.

ККН 82 и РGC 2229803, LV J1328+4937 и LV J1342+4840. Вероятные спутники яркой пары галактик М 51.

dw1343+58. Эта карликовая галактика, судя по лучевой скорости $V_{\rm LG}=365~{\rm km}~{\rm c}^{-1}$, является спутником гигантской спирали М 101.

РGC 2448110. Компактная Н II-область на периферии спутника М 101 — Sm галактики NGC 5474. В PanSTARRS-обзоре [29] внутри этой Н II-области видны компактные узлы. Отношение $SFR_{\rm H\alpha}/SFR_{\rm FUV} = 8.1$ указывает на бурную фазу звездообразования в этом объекте.

М 101-df2. Новый карликовый сфероидальный спутник галактики М 101. TRGB расстояние до нее, 6.87 Мпк [30], подтверждает принадлежность этого карлика к группе М 101.

UGC 09540 = *KKR 13*. Изолированная богатая газом dIr галактика. Расстояние до нее, 9.30 Мпк, оценено по барионной зависимости Талли-Фишера [31].

KK 242 = NGC 6503-D1. Карликовая галактика низкой поверхностной яркости, обнаруженная в работе [32] в окрестностях спиральной галактики NGC 6503. В работе [33] описана как NGC 6503-D1 повторно и дали оценку Н α -потока, завышенную в 12 раз. Согласно [34], KK 242 имеет лучевую скорость $V_{\rm hel} = 426 \pm 6$ км с⁻¹, H I-поток $F({\rm H\,I}) = 2.03$ Ян км⁻¹ с⁻¹ и ширину линии $W_{50} = 100$ км с⁻¹. Эти необычные для карликовой галактики параметры нуждаются в независимой проверке.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные выше оценки темпа звездообразования у галактик LV мы объединили с аналогичными данными для других галактик, расположенных в пределах 11 Мпк. Как отмечали в [35] и [36], темп звездообразования у галактик поздних типов мало зависит от плотности окружения. Тренд падения *SFR* от изолированных галактик к членам групп едва превышает дисперсию этой величины и оказывается наиболее выраженным у карликовых галактик самых малых масс. Другими словами, темп звездообразования в галактиках определяется, в основном, их индивидуальными свойствами, а не приливным влиянием соседей.

Распределение 506 галактик LV по величине отношения *SFR*, измеренного по H α - и FUV-потокам, представлено на рис. 2. На левом и правом графике показано, как меняется это отношение в зависимости от звездной и от водородной массы галактик соответственно. В выборку были включены только галактики поздних типов: T = 10 (Iг), 9 (Im, BCD), 8 (Sdm), 7 (Sd), 6 (Scd), поскольку эллиптические и линзовидные галактики, а также спиральные с массивными балджами ($T \leq 5$), имеют существенно другую историю звездообразования. Галактики с измеренным FUV-потоком, но

при этом с верхним пределом потока в $H\alpha$, отмечены на рис. 2 пустыми кружками и при статистике $SFR_{H\alpha}/SFR_{FUV}$ не учитывались. Как следует из приведенных данных, отношение $SFR_{H\alpha}/SFR_{FUV}$ показывает тенденцию к уменьшению в сторону маломассивных галактик, причем дисперсия этого отношения значительно возрастает от спиралей к карликам. Такие особенности диаграммы связаны со вспышечным характером звездообразования у карликовых галактик, где амплитуда вспышек на шкале времени (10–100) млн лет тем заметнее, чем меньше звездная и водородная масса галактики [12, 37–41].

Выразительными примерами являются галактики M82 и Mrk 475 в фазе вспышки и галактика DDO 120 в стадии затишья после вспышки, у которых отношение $SFR_{\rm H\alpha}/SFR_{\rm FUV}$ различаются более чем на три порядка.

В статьях [42] и [43] отмечено, что вспышечный характер звездообразования у галактик малой массы отражается на их средней поверхностной яркости. Левый график на рис. З представляет отношение $SFR_{\rm H\alpha}/SFR_{\rm FUV}$ в зависимости от средней поверхностной яркости галактик в *B*-полосе в пределах Хольмберговского радиуса. Как показывает линия регрессии, перепад в среднем отношении $SFR_{\rm H\alpha}/SFR_{\rm FUV}$ от компактных BCD-галактик ($SB \sim 22^{\rm m}/\Box''$) к тусклым карликам с $SB \sim 26^{\rm m}/\Box''$ составляет фактор приблизительно 0.5 dex.

Правый график на рис. З воспроизводит распределение отношения $SFR_{H\alpha}/SFR_{FUV}$ для галактик разных морфологических типов. Среднее значение и стандартное отклонение этой величины для разных типов галактик представлено в таблице 2, наряду со средним значением и дисперсией звездной и водородной массы галактик. Данные таблицы свидетельствуют, что среднее отношение $SFR_{
m Hlpha}/SFR_{
m FUV}$ плавно убывает при переходе от дисков спиралей к иррегулярным карликам, а дисперсия этого отношения растет в сторону карликов, подтверждая идею вспышечной активности звездообразования у маломассивных объектов. Учет галактик LV, у которых определен только верхний предел $H\alpha$ -потока, делает эту зависимость более значимой и крутой.

В Местном объеме имеется более 100 галактик с измерениями $H\alpha$ -потока, которые расположены вне зоны УФ-обзора GALEX. Данные таблицы 2 могут быть использованы для несмещенной оценки их FUV-потока по $H\alpha$ -потоку в зависимости от морфологии галактики.

Как хорошо известно, интегральный темп звездообразования тесно коррелирует со светимостью

Рис. 2. Отношение темпа звездообразования, определенного по потокам в линии Hα и FUV-полосе, в зависимости от звездной массы (а) и водородной массы галактики (b).

Таблица 2. Среднее значение и стандартное отклонение интегральных параметров галактик поздних морфологических типов с оценками темпа звездообразования

Т	N	$\langle \lg M_* \rangle$	SD	$\langle \lg M_{\rm HI} \rangle$	SD	$\langle \log(SFR_{\mathrm{H}lpha}/SFR_{\mathrm{FUV}}) \rangle$	SD
6	23	9.98 ± 0.10	0.48	9.23 ± 0.08	0.39	-0.11 ± 0.06	0.26
7	40	9.25 ± 0.09	0.55	8.86 ± 0.07	0.45	-0.19 ± 0.04	0.26
8	96	8.88 ± 0.06	0.58	8.53 ± 0.05	0.49	-0.15 ± 0.03	0.31
9	118	8.12 ± 0.06	0.64	7.72 ± 0.06	0.69	-0.25 ± 0.04	0.45
10	229	7.59 ± 0.04	0.64	7.56 ± 0.04	0.64	-0.28 ± 0.03	0.46

Рис. 3. Отношение темпа звездообразования, измеренного по потокам в линии $H\alpha$ и FUV-полосе в зависимости от средней поверхностной яркости в звездных величинах с квадратной секунды дуги (а) и морфологического типа T (b).

или массой галактики. Поэтому для характеристики процесса звездообразования обычно используют так называемый удельный темп звездообразования, $sSFR = SFR/M_*$, отнесенный к единице звездной массы. Наряду с ним, практикуется использование параметра «эффективности звездообразования», $SFE = SFR/M_{\rm H\,I}$, которое показывает насколько быстро будет израсходован наличный запас газа в галактике.

Поскольку в процессе эволюции меняется как звездная, так и газовая масса галактики, то в картине эволюции без внешнего влияния (модель «closed box») разумно ввести новую характеристику: удельный темп звездообразо-

 $bSFR = SFR/(M_* + 1.85M_{\rm H\,I})$. Здесь фактор 1.85 учитывает вклад гелия и молекулярного водорода в суммарную массу газа [44]. Распределение числа галактик Местного объ-

вания на единицу барионной массы галактики,

ема по параметрам: sSFR, SFE и bSFR представлено на трех графиках рис. 4. В каждом случае величина SFR была определена по измеренному Н α -потоку. Галактики с верхним пределом Н α -потока показаны без штриховки. Последний график рисунка соответствует значениям bSFR, вычисленным по FUV-потокам. Анализ этих гистограмм позволяет сделать следующие заключения.

Рис. 4. Распределение числа галактик Местного объема (а) по эффективности звездообразования, (b) по удельному темпу звездообразования, определенному по $H\alpha$ -потоку, (c) по удельному темпу звездообразования на единицу барионной массы, измеренному по $H\alpha$ -потоку, (d) по удельному темпу звездообразования на единицу барионной массы по измерениям в FUV-полосе. На всех графиках горизонтальная шкала выражена в единицах [yr⁻¹].

а) Распределение галактик поздних типов (T = 10-6) по темпу звездообразования, нормированному на единицу звездной массы или массы водорода или единицу суммарной барионной массы, имеет асимметричный вид с избытком числа галактик при малых значениях *SFR*. Наличие галактик (около 10% выборки), у которых FUV- или Н α -потоки ниже предела обнаружения, усиливает наблюдаемую асимметрию.

b) Медианные значения распределений: $sSFR_{H\alpha} = -10.31$ dex, $bSFR_{H\alpha} = -10.64$ dex и $bSFR_{FUV} = -10.52$ dex близки друг к другу и в 1.5-3 раза меньше темпа расширения Вселенной, $lg(H_0)[yr^{-1}] = -10.14$ dex. Наблюдаемый темп звездообразования у типичной галактики Местного объема позднего типа вполне достаточен, чтобы воспроизвести основную часть ее наблюдаемой звездной массы за космологическое время $H_0^{-1} \simeq 13.7$ Gyr. Другими словами, эволюция иррегулярных карликовых галактик и дисков спиралей может происходить в «тлеющем» режиме без бурной фазы звездообразования при $z \ge 2$, характерной для галактик ранних типов. При этом, запасы газа у галактик типов T = 10-6 способны поддерживать наблюдаемый темп звездообразования в них на протяжении почти еще одного Хаббловского времени, $0.75 \times H_0^{-1}$. С учетом поправки за содержание Не и H₂, эта величина возрастает до $1.4 \times H_0^{-1}$.

с) Распределение галактик поздних типов по величине удельного темпа звездообразования на единицу барионной массы, *bSFR*, имеет довольно четкий верхний предел, подобный эддингтоновскому пределу звездной светимости. Этот предел, очевидно, обусловлен наличием жесткой обратной связи: при сильной вспышке звездообразования происходит истощение локальных запасов нейтрального газа, что блокирует (угнетает) дальнейший процесс. В рассматриваемой выборке 570 галактик нет ни одной с темпом звездообразования bSFR(FUV) больше –9.5 dex. На диаграмме $N(\lg[bSFR_{H\alpha}])$ имеются две компактные Н II-области: PGC 2448110 и JKB 83, а также две голубые компактные галактики Маркаряна: Mrk 36 и Mrk 475, у которых $bSFR_{H\alpha}$ несколько превосходит указанный предел. Этот избыток, видимый в линии H α на шкале времени примерно 10 Муг, размывается на интервале времени около 100 Муг, характерном для оценки SFR по FUV-потоку.

Проводимый нами обзор галактик Местного объема в линии $H\alpha$, а также FUV-обзор этих галактик на космическом телескопе GALEX, оказались довольно чувствительными, чтобы определить SFR у порядка 90% галактик поздних типов T = 10-6.

6. ЗАКЛЮЧЕНИЕ

Представленные выше данные позволяют утверждать, что процессы звездообразования в иррегулярных карликовых галактиках и дисках спиральных галактик поздних типов имеют много сходства. Большинство Scd-Sc-Sdm галактик без видимых признаков балджа, вероятно, не испытывали актов слияния (merging) за последние примерно 10 Gyr [45]. Для таких «девственных» галактик характерен размеренный, вялотекущий темп звездообразования. Карликовые иррегулярные галактики имеют примерно тот же средний темп звездообразования, однако вариации SFR у них тем выше, чем меньше барионная масса карлика. Сам темп звездообразования и его вариации у галактик поздних типов определяются, в основном, индивидуальными параметрами этих галактик, будучи мало зависимыми от внешних воздействий. В процессе Нα-обзора мы обнаружили несколько интересных объектов, звездообразование в которых по всей видимости вызвано скорее всего внешними причинами, а именно натеканием межгалактического газа [46].

Распределение галактик поздних типов по величине удельного темпа звездообразования на единицу барионной массы, *bSFR*, показывает довольно четкий верхний предел, подобный эддингтоновскому пределу звездной светимости, который, очевидно, обусловлен наличием жесткой обратной связи: при сильной вспышке звездообразования в галактике происходит истощение локальных запасов нейтрального газа, что в свою очередь блокирует дальнейший процесс рождения звезд.

БЛАГОДАРНОСТИ

Работа поддержана грантом РНФ 14-02-00965.

Авторы благодарны Рецензенту за внимательное прочтение работы и сделанные замечания, которые привели к улучшению статьи.

СПИСОК ЛИТЕРАТУРЫ

- 1. I. D. Karachentsev, S. S. Kaisin, and E. I. Kaisina, Astrophysics 58, 453 (2015).
- 2. I. D. Karachentsev, D. I. Makarov, and E. I. Kaisina, Astron. J. **145**, 101 (2013).
- E. I. Kaisina, D. I. Makarov, I. D. Karachentsev, and S. S. Kaisin, Astrophysical Bulletin 67, 115 (2012).
- P. A. James, N. S. Shane, J. E. Beckman, et al., Astron. and Astrophys. 414, 23 (2004).
- 5. D. A. Hunter and B. G. Elmegreen, Astron. J. **128**, 2170 (2004).
- R. C. Kennicutt, Jr., J. C. Lee, J. G. Funes, et al., Astrophys. J. Suppl. 178, 247 (2008).
- A. Gil de Paz, S. Boissier, B. F. Madore, et al., Astrophys. J. Suppl. 173, 185 (2007).
- V. L. Afanasiev, E. B. Gazhur, S. R. Zhelenkov, and A. V. Moiseev, Bull. Spec. Astrophys. Obs. 58, 90 (2005).
- 9. R. C. Kennicutt, Jr., Astrophys. J. 272, 54 (1983).
- E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).
- 11. R. C. Kennicutt, Jr., Annual Rev. Astron. Astrophys. **36**, 189 (1998).
- J. C. Lee, R. C. Kennicutt, Jr., S. J. J. G. Funes, et al., Astrophys. J. 692, 1305 (2009).
- 13. M. A. W. Verheijen, Astrophys. J. 563, 694 (2001).
- 14. E. J. Tollerud, M. C. Geha, J. Grcevich, et al., Astrophys. J. Lett. **798**, L21 (2015).
- 15. E. J. Tollerud, M. C. Geha, J. Grcevich, et al., Astrophys. J. **827**, 89 (2016).
- 16. M. P. Haynes, R. Giovanelli, A. M. Martin, et al., Astron. J. **142**, 170 (2011).
- I. D. Karachentsev, P. Riepe, T. Zilch, et al., Astrophysical Bulletin 70, 379 (2015).
- B. P. M. Laevens, N. F. Martin, R. A. Ibata, et al., Astrophys. J. Lett. 802, L18 (2015).
- 19. J. T. A. de Jong, H.-W. Rix, N. F. Martin, et al., Astron. J. **135**, 1361 (2008).
- 20. D. Kim, H. Jerjen, D. Mackey, et al., Astrophys. J. Lett. 804, L44 (2015).
- 21. D. R. Saul, J. E. G. Peek, J. Grcevich, et al., Astrophys. J. **758**, 44 (2012).
- 22. J. L. Carlin, D. J. Sand, P. Price, et al., Astrophys. J. Lett. 828, L5 (2016).
- 23. R. B. Tully and J. R. Fisher, Astron. and Astrophys. 54, 661 (1977).
- 24. S. M. Faber and D. Burstein, in *Large-scale motions in the universe*, (Princeton Univ. Press, Princeton, 1988), pp. 115–167.
- B. L. James, S. E. Koposov, D. P. Stark, et al., Monthly Notices Royal Astron. Soc. 465, 3977 (2017).
- 26. J. N. Burchett, T. M. Tripp, J. K. Werk, et al., Astrophys. J. Lett. **779**, L17 (2013).
- 27. B. A. Jacobs, L. Rizzi, R. B. Tully, et al., Astron. J. **138**, 332 (2009).
- A. V. Zasov, A. S. Saburova, O. V. Egorov, and R. I. Uklein, Monthly Notices Royal Astron. Soc. 469, 4370 (2017).
- K. C. Chambers, E. A. Magnier, N. Metcalfe, et al., arXiv:1612.05560 (2016).

- 30. S. Danieli, P. van Dokkum, A. Merritt, et al., Astrophys. J. 837, 136 (2017).
- I. D. Karachentsev, E. I. Kaisina, and O. G. Kashibadze Nasonova, Astron. J. 153, 6 (2017).
- 32. V. E. Karachentseva and I. D. Karachentsev, Astron. and Astrophys. Suppl. **127**, 409 (1998).
- 33. J. Koda, M. Yagi, Y. Komiyama, et al., Astrophys. J. Lett. **802**, L24 (2015).
- 34. W. K. Huchtmeier, I. D. Karachentsev, V. E. Karachentseva, and M. Ehle, Astron. and Astrophys. Suppl. **141**, 469 (2000).
- 35. E. Ricciardelli, A. Cava, J. Varela, and V. Quilis, Monthly Notices Royal Astron. Soc. **445**, 4045 (2014).
- I. D. Karachentsev, E. I. Kaisina, and D. I. Makarov, Monthly Notices Royal Astron. Soc. 479, 4136 (2018).
- 37. E. D. Skillman, NewAR 49, 453 (2005).

- 38. G. S. Stinson, J. J. Dalcanton, T. Quinn, et al., Astrophys. J. **667**, 170 (2007).
- I. D. Karachentsev and S. S. Kaisin, Astron. J. 133, 1883 (2007).
- 40. K. B. W. McQuinn, E. D. Skillman, J. M. Cannon, et al., Astrophys. J. **695**, 561 (2009).
- 41. I. D. Karachentsev and E. I. Kaisina, Astron. J. **146**, 46 (2013).
- 42. G. R. Meurer, O. I. Wong, J. H. Kim, et al., Astrophys. J. 695, 765 (2009).
- F. M. Audcent-Ross, G. R. Meurer, O. I. Wong, et al., Monthly Notices Royal Astron. Soc. 480, 119 (2018).
- 44. M. Fukugita and P. J. E. Peebles, Astrophys. J. **616**, 643 (2004).
- 45. J. Kormendy, N. Drory, R. Bender, and M. E. Cornell, Astrophys. J. **723**, 54 (2010).
- A. Moiseev, I. Karachentsev, and S. Kaisin, Monthly Notices Royal Astron. Soc. 403, 1849 (2010).

Star Formation in Nearby Dwarf Galaxies

S. S. Kaisin and I. D. Karachentsev

We report the measured H α fluxes and images of 66 nearby objects observed with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. Three of these objects—IC 2233, UGC 4704, and NGC 3432—are late-type spiral galaxies, six objects are distant globular clusters of the M 31 galaxy, and the remaining ones are dwarf galaxies. We used the measured H α fluxes to estimate the integrated and specific star-formation rates and analyzed some of the main features of star formation in dwarf galaxies and late-type spirals based on a sample of more than 500 Local-volume galaxies.

Keywords: galaxies: dwarf—galaxies: star formation