УДК 524.74-52

Нα ИЗОБРАЖЕНИЯ УЛЬТРА-ПЛОСКИХ СПИРАЛЬНЫХ ГАЛАКТИК, ВИДИМЫХ С РЕБРА

© 2020 С. С. Кайсин^{1*}, И. Д. Караченцев¹, Г. Эрнандес-Толедо², Л. Гутьеррес³, В. Е. Караченцева⁴

¹Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия

²Институт астрономии UNAM, Мехико, Мексика

³Национальная астрономическая обсерватория, Энсенада, Мексика

⁴Главная астрономическая обсерватория Национальной Академии наук, Киев, 02000 Украина

Поступила в редакцию 24 сентября 2019 года; после доработки 14 ноября 2019 года;

принята к публикации 14 ноября 2019 года

Мы представляем Н α изображения ультра-плоских (UF) спиральных галактик, видимых почти с ребра. Галактики имеют угловой диаметр в *B*-полосе a > 1.9 и видимые отношения осей (a/b) > 10. Мы обнаружили, что их Н α изображения выглядят, в среднем, почти в два раза тоныше, чем в красном континууме. Темп звездообразования в изучаемых объектах, определенный по Н α -потоку, хорошо согласуется с темпом, вычисленным по *FUV*-потоку из GALEX обзора, если использовать модифицированную формулу Верхейна и Санчизи для учета внутреннего поглощения в UF-галактиках. Логарифм удельного темпа звездообразования в UF-галактиках показывает малый разброс, 0.19, с плавным уменьшением от -10.4 для карликовых спиралей к -10.7 для массивных. Относительное количество водородной массы в UF-дисках меняется от примерно 50% в карликовых дисках до около 8% в массивных. Искажения структуры в UF-галактиках встречаются менее часто (примерно 16%), чем в толстых (менее изолированных) дисках спиральных галактик, видимых с ребра. На космической шкале времени, 13.7 млрд. лет, диски больших спиралей являются более эффективными «машинами» для переработки газа в звезды, чем карликовые спирали.

Ключевые слова: галактики: спиральные — галактики: звездообразование

1. ВВЕДЕНИЕ

Реферативный каталог плоских галактик (RFGC) (Karachentsev et al. 1999) содержит 4236 объектов, распределенных по всему небу. В каталог отбирались галактики с угловым диаметром в *B*-полосе a > 0.6 и видимым отношением осей $a/b \ge 7$, измеренными на Первом Паломарском обзоре неба POSS-1 и обзоре ESO/SERC. Каталог RFGC включает в себя спиральные галактики разных морфологических типов от S0, Sa до Sd, Sm. Из этого массива была выделена выборка 817 ультра-плоских галактик (UFgg) (Karachentseva et al. 2016) с «синим» и «красным» отношением осей $(a/b)_B \ge 10$ и $(a/b)_R \ge 8.5$. Основную долю в UF-выборке составляют спиральные галактик типов Sc, Scd, Sd, у которых сфероидальная звездная подсистема вносит незначительный вклад в общую массу/светимость галактики. Такие дискообразные

галактики с пренебрежимо малыми балджами являются привлекательными объектами для различных исследований их кинематики, динамики и особенностей звездообразования ввиду простой структуры этих галактик.

Согласно данным Karachentsev et al. (2016), Melnyk et al. (2017), UF-галактики располагаются в областях пониженной плотности, избегая тесного соседства с другими галактиками. Очевидно, что отсутствие близких соседей является важным условием для выживания тонкого звездного диска. Наличие у UF-галактик редких мелких спутников дает возможность оценить полную массу по измерениям разности лучевых скоростей и проекционных расстояний спутников. Вопреки некоторым ожиданиям Banerjee and Jog (2013), темные гало UF-галактик не показали избытка темной материи по сравнению с другими спиральными галактиками (Karachentsev et al. 2016).

Получение изображений ультраплоских галактик в эмиссионной линии $H\alpha$ представляет большой интерес, поскольку позволяет выделить H II-

^{*}E-mail: skai@sao.ru

области с молодым звездным населением. К сожалению, данные об Н α -изображениях тонких дисков галактик, видимых с ребра, крайне редки в литературе. Однако, уже первый Н α -снимок UF-галактики RFGC 2246 = UGC 7321 показал (Karachentsev et al. 2015), что подсистема молодого населения галактики имеет отношение осей $(a/b)_{H\alpha} = 38$, гораздо большее, чем старое население диска, (a/b) = 14. Связь между сжатием диска и возрастом его населения можно было бы проследить по изображениям UF-галактик в ультрафиолетовых диапазонах *FUV* и *NUV*, но низкое угловое разрешение существующего GALEXобзора (Gil de Paz et al. 2007) препятствует успеху такого подхода.

Для наблюдений в линии Н α мы отбирали наиболее крупные UF-галактики с угловым диаметром в *B*-полосе (a/b) > 1 '.9, расположенные в зоне склонений DEC > -30° .

2. НАБЛЮДЕНИЯ И ОБРАБОТКА ДАННЫХ

Наблюдения UF-галактик в эмиссионной линии Н α выполнялись на 2.12-м f/7.5 кассегреновском телескопе Национальной астрономической обсерватории Сан Педро в Мексике в течение нескольких сетов с февраля 2016 г. по сентябрь 2017 г. Телескоп был оснащен 2K×2K CCD камерой с размером пикселя 13.5×13.5 μ m. При биннинге 2×2 камера обеспечивала поле зрения 6'×6' с разрешением 0.352 arcsec/pixel. Наблюдения проводились с набором узких интерференционных фильтров, центрированных на различные длины волн: 6603, 6643, 6683 и 6723 Å и с эквивалентными ширинами 80 Å сообразно лучевой скорости галактики. Кривые спектрального пропускания фильтров приведены на рис. 1.

Для вычитания континуума были сделаны снимки галактик в широкополосном г-Gunn фильтре. Калибровка снимков осуществлялась каждую ночь с помощью спектрофотометрических стандартов.

Обработка наблюдательных данных выполнялась набором стандартных процедур, которые включали в себя: вычитание bias, деление на плоское поле, удаление космических частиц и вычитание фона неба. Снимки в континууме нормировались к изображению в $H\alpha$ -фильтре с использованием нескольких дюжин звезд и затем вычитались. $H\alpha$ -поток галактики определялся по $H\alpha$ -изображению с вычтенным континуумом. Типичная погрешность измерения $H\alpha$ -потока определялась, как правило, погодными условиями и составляла около 0.1 dex. При этой точности мы игнорировали вклад в поток эмиссионного дублета [N II], соседнего с $H\alpha$.

Рис. 1. Кривые спектрального пропускания фильтров, использовавшихся в наблюдениях.

3. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

Первая страница мозаики 45 пар полученных изображений UF-галактик представлена на рис. 2. Левые изображения в каждой паре соответствуют суммарной экспозиции в линии $H\alpha$ и в континууме, а правые показывают разность снимков в $H\alpha$ и континууме. Имя каждого объекта, масштаб снимка и ориентация «север—восток» указаны на правых изображениях. На ряде снимков видны остаточные следы от ярких звезд и объектов с аномальным цветом.

Сводка основных параметров наблюдавшихся UF-галактик представлена в таблице 1. В столбцах таблицы содержатся: (1) — номер галактики в каталоге RFGC; (2) — экваториальные координаты; (3,4) — угловой диаметр в агстіп и видимое отношение осей из каталога RFGC, измеренные на репродукциях Паломарского обзора неба в *B*полосе; (5) — гелиоцентрическая лучевая скорость галактики в км с⁻¹; (6) — эффективная длина волны фильтра (Å), в котором экспонировалась галактика; (7) — время экспозиции в Н α -фильтре в сек; (8) — логарифм потока в линиях Н α + [N II] в эрг см⁻² сек⁻¹.

Помимо линии $H\alpha$, в используемые нами фильтры попадают линии азота [N II]: 6548 Å и 6584 Å. Согласно Kennicutt et al. (2008), отношение интенсивностей линий [N II] и $H\alpha$ для спиральных галактик зависит от абсолютной величины галактики и выражается соотношением

$$\lg(F[N \text{ II}]/F(\text{H}\alpha)) = -0.173M_B - 3.90$$
 (1)

при $M_B > -21$ ^m0 и -0.27 при $M_B < -21$ ^m0 со средним квадратичным отклонением 0.26 dex. Для типичной галактики нашей выборки с $M_B \simeq -19$ ^m4 величина поправки к потоку $F(\text{H}\alpha)$ за счет вклада

Рис. 2. Мозаика изображений ультра-плоских галактик. Левые изображения в каждой паре представляют сумму экспозиций в линии Hα и в континууме, а правые изображения соответствуют разности «Hα-континуум». На правых снимках указаны: имя галактики, линейный масштаб, направление «север-восток». Полная сводка Hα-изображений UF-галактик доступна по адресу http://lv.sao.ru/EDGE-ON/.

Galaxy	RA (2000.0) DEC	a′	$\log(a/b)$	V_h	Filter	$T_{\rm exp}$	$\log F_{\mathrm{H}\alpha}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
RFGC 001	000056.0 + 202016	2.02	1.07	6804	6723	1440	-13.45
RFGC 099	002547.7 - 021705	2.46	1.05	5339	6643	2160	-12.97
RFGC 124	003149.4 -264312	2.80	1.00	7235	6723	2160	-12.72
RFGC 161	004214.7 - 180942	3.36	1.05	1553	6603	2700	-12.80
RFGC 176	004708.2 + 302027	2.50	1.08	5248	6643	2160	-12.98
RFGC 255	010836.9 + 013830	4.65	1.19	1982	6603	2700	-12.77
RFGC 438	020302.0 - 093922	2.80	1.19	3864	6643	1800	-12.73
RFGC 463	020926.4 + 371529	2.13	1.29	4586	6643	2160	-13.46
RFGC 504	022131.0 + 141155	2.52	1.06	3744	6643	2160	-12.85
RFGC 511	022356.1 - 064216	1.97	1.22	9560	6723	2160	-13.61
RFGC 517	022515.5 + 452704	2.02	1.00	5195	6643	2160	-13.21
RFGC 531	022827.3 + 153625	1.90	1.16	4080	6643	2160	-13.39
RFGC 560	023631.6 + 071834	2.89	1.12	6122	6723	2160	-12.91
RFGC 603	025017.5 - 083550	2.55	1.01	5326	6643	2160	-13.42
RFGC 620	025426.2 + 423900	2.43	1.21	2162	6603	1800	-13.11
RFGC 722	032524.8 - 161405	3.23	1.06	1873	6603	2400	-12.81
RFGC 798	040048.9 + 350049	2.55	1.06	4157	6643	2160	-12.93
RFGC 855	042921.8 - 044535	2.12	1.03	4353	6643	3600	-13.03
RFGC 911	045146.0 + 034005	2.02	1.00	4578	6643	2160	-13.41
RFGC 944	050732.0 -113905	2.26	1.12	2358	6603	2400	-13.39
RFGC 1133	064854.0 + 661540	2.24	1.01	3304	6643	3600	-12.76
RFGC 1339	081357.6 +523853	4.87	1.09	5459	6683	3600	-13.31
RFGC 1434	084850.8 + 295212	2.13	1.05	5964	6683	3600	-13.57
RFGC 1462	085901.0 +391233	4.14	1.00	595	6603	2400	-12.98
RFGC 1504	091154.6 - 200700	4.76	1.19	2177	6603	2400	-12.95
RFGC 1700	100236.0 - 060049	4.31	1.16	661	6603	3600	-12.90
RFGC 3359	182402.4 + 651822	2.52	1.22	7124	6723	2160	-13.20
RFGC 3378	183339.5 + 320822	1.95	1.25	5456	6683	2400	-13.62
RFGC 3385	183754.4 + 173201	2.63	1.14	4500	6683	1800	-13.05
RFGC 3608	203523.7 - 061440	2.11	1.07	5798	6643	2400	-13.39
RFGC 3645	204838.4 -171430	2.08	1.32	8336	6723	2160	-13.50
RFGC 3651	204952.2 -070119	3.47	1.05	6047	6723	2160	-12.94
RFGC 3803	214439.4 - 064121	2.06	1.27	3090	6643	2400	-13.39
RFGC 3824	215235.8 +281823	2.08	1.09	3476	6643	2160	-12.88
RFGC 3827	215245.5 +385611	3.09	1.11	5989	6723	2160	-12.95
RFGC 3846	215807.4 +010032	3.47	1.13	3011	6643	2160	-13.17
RFGC 3880	220804.8 - 101959	2.16	1.33	2866	6643	2400	-13.63
RFGC 3935	222316.6 - 285851	3.64	1.03	1808	6603	2700	-12.68
RFGC 4039	225912.8 +133624	3.44	1.24	2568	6643	2160	-12.84
RFGC 4072	230754.9 +050940	1.90	1.02	3523	6643	2160	-13.26
RFGC 4078	231203.6 +484859	1.93	1.29	8657	6723	2160	-13.25
RFGC 4081	231313.1 +062548	4.70	1.02	4839	6683	1800	-13.23
RFGC 4091	231502.6 +012608	2.11	1.05	4961	6643	2160	-13.41
RFGC 4106	231930.4 + 160429	3.25	1.06	7238	6723	2160	-12.97
RFGC 4149	233543.6 + 322306	2.37	1.12	4957	6683	2100	-12.95

Таблица 1. Список ультра-плоских галактик, наблюдавшихся в линии $H\alpha$

дублета [N II] составляет -0.14 dex, что меньше стандартного отклонения в соотношении (1). Поэтому мы не исправляли измеренный поток $F(\text{H}\alpha + [\text{N II}])$ за вклад азотного дублета.

Измеренный интегральный поток галактики $F_c(\text{H}\alpha)$, исправленный за Галактическое и внутреннее поглощение, использовался нами для определения интегрального темпа звездообразования, $SFR(\text{H}\alpha)$, в единицах M_{\odot} /год. Согласно Kennicutt (1998),

$$\lg(SFR(\mathbf{H}\alpha)) = \lg F_c(\mathbf{H}\alpha) + 2\lg D + 8.98, \quad (2)$$

где расстояние *D* выражено в Мпк.

У большинства галактик нашей выборки имеются оценки видимой величины m_{FUV} в FUV-полосе далекого ультрафиолета ($\lambda_{\rm ef} = 1539$ Å, FWHM = 269 Å), измеренной на спутнике GALEX¹. Следуя Lee et al. (2011), мы определяли интегральный темп звездообразования галактики как

$$\lg(SFR(FUV)) = 2.78 - 0.4m_{FUV}^c + 2\lg D, \quad (3)$$

где видимая FUV-величина исправлена за внешнее и внутреннее поглощение. Сравнение значений $SFR(H\alpha)$ и SFR(FUV) дает возможность уточнить величину внутреннего поглощения в галактиках, которое в случае edge-on галактик оказывается значительным.

Расширенная сводка основных параметров UFгалактик представлена в таблице 2. Помимо 45 наблюдавшихся нами галактик мы включили в конце таблицы данные об еще десяти UF-галактиках с измерениями $F(H\alpha)$ -потока, сделанными Gavazzi et al. (2015), Karachentsev et al. (2015), Spector and Brosch (2017). В столбцах таблицы 2 содержатся: (1) — номер галактики в RFGC; (2) — морфологический тип по шкале de Vaucouleurs: 4 — Sbc, 5 — Sc, 6 — Scd, 7 — Sd, определенный нами по изображениям галактики в PanSTARRS-обзоре (Chambers et al. 2016); (3) — логарифм видимого отношения осей, приведенного к стандартной изофоте из HyperLEDA (Makarov et al. 2014); (4, 5) видимая В-величина и Галактическое поглощение в В-полосе из Makarov et al. (2014), Schlegel et al. (1998); (6) — расстояние до галактики (Мпк), определенное по лучевой скорости относительно центроида Местной группы при параметре Хаббла $H_0=73~{\rm km}~{\rm c}^{-1}~{\rm M}{\rm n}{\rm k}^{-1};$ для более близких галактик с $V_{\rm LG}<2500~{\rm km}~{\rm c}^{-1}$ оценкаDсделана в рамках модели Shaya et al. (2017), учитывающей падение галактик к скоплению Virgo и расширение Местной космической пустоты; (7) — амплитуда вращения галактики (в км c^{-1}) из Makarov et al. (2014); (8) видимая величина m_{21} из Makarov et al. (2014),

характеризующая поток галактики в линии нейтрального водорода 21 см; (9) — логарифм потока в линии H α ; (10) — видимая величина галактики в FUV-полосе по данным GALEX; (11) — логарифм водородной массы галактики

$$\lg M_{\rm HI} = 12.33 - 0.4m_{21} + 2\lg D, \qquad (4)$$

выраженный в единицах M_{\odot} ; (12) — величина принятого нами внутреннего поглощения в галактике в B-полосе (см. раздел 4); (13) — видимая величина галактики в K-полосе, определенная по интегральной B-величине и морфологическому типу T как

$$K = B + T/4 - 4.60 \tag{5}$$

с учетом внутреннего и внешнего поглощения; такой рецепт, предложенный Јаггеtt et al. (2003), нивелирует систематическую недооценку потока от периферийных областей при фотометрии голубоватых edge-on галактик в обзоре 2MASS (Jarrett et al. 2000); (14) — интегральная светимость галактики в K-полосе (в L_{\odot}), которая при $M_*/L_K = 1M_{\odot}/L_{\odot}$ (Bell et al. 2003) соответствует звездной массе галактики; (15,16) — интегральный темп звездообразования, определенныйпо Н α и FUV потокам; (17) — удельный темп звездообразования $sSFR(\text{H}\alpha)/M_*$ в единицах (уг⁻¹) в предположении $M_*/L_K = 1$.

4. УЧЕТ ВНУТРЕННЕГО ПОГЛОЩЕНИЯ В UF-ГАЛАКТИКАХ

Пример нашей Галактики показывает, что пыль, Н II-области и голубые звезды распределены в спиральном диске крайне неравномерно. Картина клочковатого распределения пыли далека от простой модели плоско-параллельных слоев. По этой причине до сих пор не было предложено надежной схемы учета внутреннего поглощения. Обычно величину поглощения в *B*-полосе выражают в виде

$$A_B^i = \gamma \lg(a/b),\tag{6}$$

где коэффициент γ зависит от светимости или же морфологического типа галактики. Схема учета внутреннего поглощения, используемая в HyperLEDA, подразумевает зависимость γ от морфологического типа. Ее несовершенством является монотонный рост величины γ с увеличением T, что приводит к сильной переоценке поглощения у карликовых галактик поздних типов.

Другие авторы (Bothwell et al. 2009, Devour and Bell 2016, Lee et al. 2009) использовали схемы, где параметр γ зависел от абсолютной величины галактики, причем характер этой зависимости был существенно различным у разных авторов. Очевидно, что сама абсолютная величина галактики зависит от принимаемого внутреннего поглощения,

¹http://galex.stsci.edu/GalexView/

-плоских галактик
ультра
сновные характеристики
0
блица 2
Ta

$\log sSFRc$	(17)	-10.87	-10.34	-10.51	-10.53	-10.65	-10.37	-10.34	-10.61	-10.59	-10.84	-10.74	-10.70	-10.45	-11.07	-10.37	-10.15	-10.63	-10.45	-10.59	-10.79	-10.43	-10.87	-11.03	-10.39	-10.79	-10.51	-10.55	-10.70
$\log SFRu$	(16)	0.34	0.70	0.06		0.60	-0.49	0.46		0.36	0.71	-0.21	-0.46	0.62	0.02	-0.88	-0.35		0.09				0.18	-0.11	-1.05	-0.02	-1.42	0.49	0.19
$\log SFR\alpha$	(15)	0.14	0.34	0.94	-0.84	0.33	-0.75	0.19	-0.50	0.26	0.28	0.07	-0.37	0.64	-0.22	-0.79	-0.67	0.33	0.01	-0.38	-0.97	0.16	0.14	-0.31	-1.50	-0.35	-1.71	0.47	-0.06
$\log L_K$	(14)	11.01	10.68	11.45	9.69	10.98	9.62	10.53	10.11	10.85	11.12	10.81	10.33	11.09	10.85	9.58	9.48	10.96	10.46	10.21	9.82	10.59	11.01	10.72	8.89	10.44	8.80	11.02	10.64
m_K	(13)	10.67	10.95	9.66	10.76	10.19	11.13	10.57	12.09	9.76	10.98	10.59	11.27	10.19	10.47	11.85	11.55	9.73	10.98	11.70	11.19	10.15	10.10	11.01	11.94	9.26	11.28	10.75	11.13
A_B	(12)	1.29	1.28	1.51	0.63	1.19	0.58	1.08	0.68	1.21	1.50	1.07	0.63	1.36	1.07	0.53	0.75	1.19	1.07	0.93	0.67	1.18	1.59	0.99	0.26	1.47	0.40	1.48	1.64
$\log M_{\rm HI}$	(11)	10.09	10.07	9.72	9.28	10.11	9.30	9.83	9.66	9.77		9.61	9.59	10.29	9.62	9.13	9.48	9.79	9.71	10.04	9.12	9.54	10.26	9.88	8.93	9.63	8.57	10.18	9.67
V)	8	ĵ	2		7				~	(Ĵ.	ŷ	l	2	7	l)				2	((,	2
m_{FU}	(10)	19.1	17.20	19.92		17.67	16.41	16.71		18.28	18.90	19.66	20.06	18.7	18.55	18.47	16.6]		18.09				19.27	19.00	16.21	18.18	16.60	18.96	19.82
$\log F_{\mathrm{H}\alpha} \mid m_{FU}$	(9) (10)	-13.45 19.1	-12.97 17.20	-12.72 19.95	-12.80	-12.98 17.67	-12.77 16.41	-12.73 16.71	-13.46	-12.85 18.28	-13.61 18.90	-13.21 19.66	-13.39 20.06	-12.91 18.7	-13.42 18.52	-13.11 18.47	-12.81 16.61	-12.93	-13.03 18.09	-13.41	-13.39	-12.76	-13.31 19.27	-13.57 19.00	-12.98 16.21	-12.95 18.18	-12.90 16.60	-13.20 18.96	-13.62 19.82
$m_{21} \log F_{\mathrm{H}\alpha} m_{FU}$	$(8) \qquad (9) \qquad (10)$	15.53 - 13.45 19.1	15.02 -12.97 17.20	16.54 - 12.72 19.95	14.33 -12.80	14.93 -12.98 17.67	14.48 -12.77 16.41	14.88 -12.73 16.71	15.77 - 13.46	15.03 -12.85 18.28	-13.61 18.90	16.15 -13.21 19.66	15.67 -13.39 20.06	14.74 -12.91 18.7	16.08 - 13.42 18.52	15.53 -13.11 18.47	14.12 -12.81 16.6	15.20 - 12.93	15.40 - 13.03 18.09	14.68 - 13.41	15.48 - 13.39	15.34 - 12.76	14.52 -13.31 19.27	15.66 -13.57 19.00	14.39 -12.98 16.21	13.82 -12.95 18.18	14.40 - 12.90 16.60	15.40 - 13.20 18.96	16.11 -13.62 19.82
$V_m \mid m_{21} \mid \log F_{\mathrm{H}\alpha} \mid m_{FU}$	(7) (8) (9) (10)	204 15.53 -13.45 19.1	$190 \ 15.02 \ -12.97 \ 17.20$	294 16.54 - 12.72 19.95	86 14.33 -12.80	165 14.93 -12.98 17.67	89 14.48 -12.77 16.41	117 14.88 -12.73 16.71	$104 \ 15.77 \ -13.46$	180 15.03 -12.85 18.28	-13.61 18.90	128 16.15 -13.21 19.66	93 15.67 -13.39 20.06	202 14.74 -12.91 18.7	130 16.08 -13.42 18.55	86 15.53 -13.11 18.47	101 14.12 -12.81 16.61	$166 \ 15.20 \ -12.93$	136 15.40 - 13.03 18.09	111 14.68 -13.41	99 15.48 -13.39	142 15.34 -12.76	277 14.52 -13.31 19.27	186 15.66 -13.57 19.00	48 14.39 -12.98 16.21	156 13.82 -12.95 18.18	53 14.40 - 12.90 16.60	191 15.40 -13.20 18.96	$184 \ 16.11 \ -13.62 \ 19.82$
$D V_m m_{21} \log F_{\mathrm{H}\alpha} m_{FU}$	(6) (7) (8) (9) (10)	97 204 15.53 -13.45 19.1	75 190 15.02 -12.97 17.20	$101 \ 294 \ 16.54 \ -12.72 \ 19.92$	22 86 14.33 -12.80	75 165 14.93 -12.98 17.67	24 89 14.48 -12.77 16.41	53 117 14.88 -12.73 16.71	66 104 15.77 -13.46	53 180 15.03 -12.85 18.28	131 -13.61 18.90	74 128 16.15 -13.21 19.66	58 93 15.67 -13.39 20.06	85 202 14.74 -12.91 18.7	73 130 16.08 -13.42 18.55	32 86 15.53 -13.11 18.47	25 101 14.12 -12.81 16.61	59 166 15.20 - 12.93	59 136 15.40 -13.03 18.09	62 111 14.68 -13.41	31 99 15.48 -13.39	47 142 15.34 -12.76	74 277 14.52 -13.31 19.27	81 186 15.66 -13.57 19.00	15 48 14.39 -12.98 16.21	26 156 13.82 -12.95 18.18	10 53 14.40 -12.90 16.60	$101 \ 191 \ 15.40 \ -13.20 \ 18.96$	78 184 16.11 -13.62 19.85
$A_G D V_m m_{21} \log F_{\mathrm{H}\alpha} m_{FU}$	(5) (6) (7) (8) (9) (10)	0.34 97 204 15.53 -13.45 19.1	0.11 75 190 15.02 -12.97 17.20	$0.09 \ 101 \ 294 \ 16.54 \ -12.72 \ 19.95$	0.09 22 86 14.33 -12.80	0.29 75 165 14.93 -12.98 17.67	0.11 24 89 14.48 -12.77 16.41	0.11 53 117 14.88 -12.73 16.71	0.21 66 104 15.77 -13.46	0.66 53 180 15.03 -12.85 18.28	0.13 131 -13.61 18.90	0.40 74 128 16.15 -13.21 19.66	1.00 58 93 15.67 -13.39 20.06	0.54 85 202 14.74 -12.91 18.7	0.13 73 130 16.08 -13.42 18.55	0.40 32 86 15.53 -13.11 18.47	0.18 25 101 14.12 -12.81 16.61	0.92 59 166 15.20 -12.93	0.23 59 136 15.40 -13.03 18.09	0.27 62 111 14.68 -13.41	0.69 31 99 15.48 -13.39	0.35 47 142 15.34 -12.76	0.19 74 277 14.52 -13.31 19.27	0.17 81 186 15.66 -13.57 19.00	0.13 15 48 14.39 -12.98 16.21	0.66 26 156 13.82 -12.95 18.18	0.17 10 53 14.40 -12.90 16.60	0.18 101 191 15.40 -13.20 18.96	0.38 78 184 16.11 -13.62 19.82
$B_t \mid A_G \mid D \mid V_m \mid m_{21} \mid \log F_{\mathrm{H}\alpha} \mid m_{FU}$	(4) (5) (6) (7) (8) (9) (10)	15.65 0.34 97 204 15.53 - 13.45 19.1	15.69 0.11 75 190 15.02 -12.97 17.20	14.61 0.09 101 294 16.54 -12.72 19.95	14.33 0.09 22 86 14.33 -12.80	14.77 0.29 75 165 14.93 -12.98 17.63	14.67 0.11 24 89 14.48 -12.77 16.41	14.61 0.11 53 117 14.88 -12.73 16.71	16.08 0.21 66 104 15.77 - 13.46	14.73 0.66 53 180 15.03 -12.85 18.28	15.88 0.13 131 -13.61 18.90	15.41 0.40 74 128 16.15 -13.21 19.66	16.0 1.00 58 93 15.67 -13.39 20.06	15.44 0.54 85 202 14.74 - 12.91 18.71	15.02 0.13 73 130 16.08 -13.42 18.55	15.63 0.40 32 86 15.53 -13.11 18.47	15.33 0.18 25 101 14.12 -12.81 16.6	15.19 0.92 59 166 15.20 -12.93	15.38 0.23 59 136 15.40 - 13.03 18.09	16.0 0.27 62 111 14.68 -13.41	15.40 0.69 31 99 15.48 -13.39	15.28 0.35 47 142 15.34 -12.76	15.23 0.19 74 277 14.52 - 13.31 19.27	15.52 0.17 81 186 15.66 -13.57 19.00	15.18 0.13 15 48 14.39 -12.98 16.21	14.74 0.66 26 156 13.82 -12.95 18.18	14.70 0.17 10 53 14.40 -12.90 16.60	15.76 0.18 101 191 15.40 -13.20 18.96	16.50 0.38 78 184 16.11 -13.62 19.85
$\log r_{25} B_t A_G \mid D V_m \mid m_{21} \log F_{\mathrm{H}\alpha} \mid m_{FU}$	(3) (4) (5) (6) (7) (8) (9) (10)	0.85 15.65 0.34 97 204 15.53 -13.45 19.1	0.88 15.69 0.11 75 190 15.02 -12.97 17.20	0.82 14.61 0.09 101 294 16.54 -12.72 19.95	0.82 14.33 0.09 22 86 14.33 -12.80	0.89 14.77 0.29 75 165 14.93 -12.98 17.65	0.73 14.67 0.11 24 89 14.48 -12.77 16.41	1.04 14.61 0.11 53 117 14.88 -12.73 16.71	0.73 16.08 0.21 66 104 15.77 -13.46	0.86 14.73 0.66 53 180 15.03 -12.85 18.28	1.00 15.88 0.13 131 -13.61 18.90	0.86 15.41 0.40 74 128 16.15 -13.21 19.66	0.75 16.0 1.00 58 93 15.67 -13.39 20.06	0.90 15.44 0.54 85 202 14.74 -12.91 18.7	0.95 15.02 0.13 73 130 16.08 -13.42 18.55	0.69 15.63 0.40 32 86 15.53 -13.11 18.47	0.83 15.33 0.18 25 101 14.12 -12.81 16.6	0.89 15.19 0.92 59 166 15.20 -12.93	0.92 15.38 0.23 59 136 15.40 -13.03 18.09	0.94 16.0 0.27 62 111 14.68 -13.41	0.75 15.40 0.69 31 99 15.48 -13.39	0.98 15.28 0.35 47 142 15.34 -12.76	0.89 15.23 0.19 74 277 14.52 -13.31 19.27	0.69 15.52 0.17 81 186 15.66 -13.57 19.00	0.98 15.18 0.13 15 48 14.39 -12.98 16.21	1.14 14.74 0.66 26 156 13.82 -12.95 18.18	1.15 14.70 0.17 10 53 14.40 -12.90 16.60	1.01 15.76 0.18 101 191 15.40 -13.20 18.96	1.15 16.50 0.38 78 184 16.11 -13.62 19.85
T $\log r_{25}$ Bt AG D Vm m_{21} $\log F_{\mathrm{H}\alpha}$ m_{FU}	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 0.85 15.65 0.34 97 204 15.53 -13.45 19.1	5 0.88 15.69 0.11 75 190 15.02 -12.97 17.20	5 0.82 14.61 0.09 101 294 16.54 -12.72 19.95	7 0.82 14.33 0.09 22 86 14.33 -12.80	6 0.89 14.77 0.29 75 165 14.93 -12.98 17.65	7 0.73 14.67 0.11 24 89 14.48 -12.77 16.41	7 1.04 14.61 0.11 53 117 14.88 -12.73 16.71	6 0.73 16.08 0.21 66 104 15.77 -13.46	6 0.86 14.73 0.66 53 180 15.03 -12.85 18.28	5 1.00 15.88 0.13 131 -13.61 18.90	5 0.86 15.41 0.40 74 128 16.15 -13.21 19.66	6 0.75 16.0 1.00 58 93 15.67 -13.39 20.06	5 0.90 15.44 0.54 85 202 14.74 -12.91 18.7	$\begin{bmatrix} 5 & 0.95 & 15.02 & 0.13 & 73 & 130 & 16.08 & -13.42 & 18.55 \\ \end{bmatrix}$	7 0.69 15.63 0.40 32 86 15.53 -13.11 18.47	7 0.83 15.33 0.18 25 101 14.12 -12.81 16.6	5 0.89 15.19 0.92 59 166 15.20 -12.93	6 0.92 15.38 0.23 59 136 15.40 -13.03 18.05	6 0.94 16.0 0.27 62 111 14.68 -13.41	7 0.75 15.40 0.69 31 99 15.48 -13.39	4 0.98 15.28 0.35 47 142 15.34 -12.76	5 0.89 15.23 0.19 74 277 14.52 -13.31 19.27	5 0.69 15.52 0.17 81 186 15.66 -13.57 19.00	7 0.98 15.18 0.13 15 48 14.39 -12.98 16.21	5 1.14 14.74 0.66 26 156 13.82 -12.95 18.18	7 1.15 14.70 0.17 10 53 14.40 -12.90 16.60	5 1.01 15.76 0.18 101 191 15.40 -13.20 18.96	5 1.15 16.50 0.38 78 184 16.11 -13.62 19.85

КАЙСИН и др.

Таблица 2. Основные характеристики ультра-плоских галактик. (Продолжение)

(16) (16) (1 8 -110 -110 -110 -110 -110 -110 -110 -11
1 11 0.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{100 ^{\text{IV}HII} ^{\text{IV}E}}{(11)} (12)$
(10)
, на ()
-13 (9
(7) (8) (5 234 14 75 -13
<u>(2) (0) (7) (8) (5</u> 27 65 934 14 75 <u>13</u>
15 39 1 97 65 934 14 75 -13
5 0 74 15 39 1 97 65 934 14 75 - 13

поэтому схема оценки A_B^i для edge-on галактик требует ряда последовательных итераций.

Verheijen and Sancisi (2001) предложили выражать параметр γ через амплитуду вращения галактики:

$$\gamma(V_m) = [1.54 + 2.5(\lg V_m - 2.2)] \tag{7}$$

при $V_m > 43$ км с⁻¹ и $\gamma = 0$ при $V_m < 43$ км с⁻¹. Такой подход свободен от итераций, однако применим только к галактикам с известной амплитудой вращения. Рассматривая статистику отношения $SFR(H\alpha)/SFR(FUV)$ для галактик Местного объема, Karachentsev et al. (2018) пришли к заключению, что выражение (6) несколько завышает величину поглощения у массивных галактик и занижает ее для карликовых галактик. По нашей оценке оптимальное значение поправки за внутреннее поглощение в спиральных дисках позднего типа имеет вид

$$A_B^i = (1.3 + 2.0(\lg V_m - 2.2)) \lg r_{25}$$
(8)

при $V_m > 36 \ \mathrm{кm} \ \mathrm{c}^{-1}$ и $A_B^i = 0$ при $V_m < 36 \ \mathrm{кm} \ \mathrm{c}^{-1}$, где $r_{25} = (a/b)_{25}$ — видимое отношение осей, приведенное к стандартной изофоте (Makarov et al. 2014). Посчитанные по этому рецепту значения A_B^i представлены в таблице 2. Для двух галактик с неизвестными V_m оценки поглощения сделаны нами по эмпирическому соотношению

$$A_B^i(T) = \begin{cases} (3.0 - 0.3T) \ \lg r_{25} \ , T > 4\\ 0.3(1+T) \ \lg r_{25} \ , T < 5, \end{cases}$$
(9)

которое более адекватно описывает поглощение в галактиках поздних типов, чем схемы Bothwell et al. (2009), Devour and Bell (2016), Lee et al. (2009) или алгоритм, использованный в HyperLEDA. Следуя Lee et al. (2009), мы принимали для Галактического поглощения в $H\alpha$ и FUV-полосе коэффициенты перехода

$$A_{\rm H\alpha}^G = 0.61 A_B^G, \ A_{FUV}^G = 1.93 A_B^G.$$
(10)

Для внутреннего поглощения, согласно Lee et al. (2009), были приняты соотношения

$$A^i_{\mathrm{H}\alpha} = 1.07 A^i_B, \ A^i_{FUV} = 1.93 A^i_B.$$
 (11)

Здесь более высокое значение коэффициента перехода для линии $H\alpha$ по сравнению с соотношением (9) обусловлено наличием тесной корреляции между распределением пыли и HII-областей в дисках галактик, а его величина оценена по спектрофотометрическим измерениям бальмеровского декремента (см. детали в Lee et al. (2009)).

Определяя водородную массу галактик $M_{\rm HI}$, мы игнорировали поправку за внутреннее самопоглощение эмиссии в линии 21 см. Для галактик, видимых с ребра, HyperLEDA вводит поправку к m_{21} за эффект самопоглощения, равную $\Delta m_{21} = -0$.^m82. Однако, такая поправка представляется нам завышенной. Jones et al. (2018) исследовали эффект самопоглощения в линии 21 см на выборке 2022 галактик из обзора ALFALFA и пришли к выводу, что диски галактик почти прозрачны в линии 21 см, а величина необходимой поправки составляет всего

$$\Delta \lg M_{\rm HI} = (0.13 \pm 0.03) \lg(a/b).$$
(12)

Однако, сравнение выборки UF-галактик с выборкой Sc, Sd-галактик, видимых анфас (Karachentsev and Karachentseva 2019), показывает, что эффект самопоглощения в действительности оказывается еще меньше, теряясь в ошибках измерения H Iпотока галактик и ошибках морфологической классификации галактик.

5. ТЕМПЫ ЗВЕЗДООБРАЗОВАНИЯ В УЛЬТРА-ПЛОСКИХ ГАЛАКТИКАХ

Зависимость темпа звездообразования, определенного по Н α -потоку, от K-светимости UFгалактик представлена на верхней панели рис. 4. Наши измерения показаны сплошными кружками, а данные из литературы — открытыми кружками. Пунктирная прямая соответствует случаю $lg(SFR) = lg L_K - 10.14$, когда галактика успевает воспроизвести свою наблюдаемую звездную массу при наблюдаемом темпе SFR за космологическое время $T_0 = 13.7$ Gyr. Линейная регрессия (сплошная линия) имеет наклон 0.87 ± 0.04 , указывая на то, что более массивным галактикам в прошлом требовались более высокие темпы звездообразования, чтобы обеспечить наработанную звездную массу. Аналогичная диаграмма в случае SFR, вычисленных по FUV-потоку, показана на нижней панели рис. З. В общем, диаграмма имеет аналогичный вид, хотя дисперсия оценок SFR оказывается большей.

Сравнение полученных значений $SFR(H\alpha)$ и SFR(FUV) представлено на рис. 4. Данные хорошо группируются вдоль диагонали, имея средние значения $\langle SFR(H\alpha) \rangle = -0.11 \pm 0.08$ и $\langle SFR(FUV) \rangle = -0.03 \pm 0.09$. Это обстоятельство косвенно подтверждает, что различие в калибровках эмпирических соотношений (1) и (2) невелико, а принятая нами схема учета внутреннего поглощения в дисках галактик близка к реальности.

Рисунок 5 воспроизводит соотношение между удельным темпом звездообразования $sSFR(H\alpha)$ и интегральной *K*-светимостью или звездной массой UF-галактик при $M_*/L_K = 1$. Горизонтальная пунктирная линия соответствует параметру Хаббла $H_0 = 73 \,$ км с⁻¹ Мпк⁻¹. Разброс галактик относительно квадратичной линии регрессии невелик, 0.19 dex, что указывает на довольно единообразный характер звездообразования в тонких дисках

-9.0

-9.5

-10.0

-10.5

-11.0

-11.5

-12.0

8.5

9.0

9.5

10.0

Рис. 5. Зависимость удельного темпа звездообразо-

вания от К-светимости для галактик, наблюдавшихся

в линии Н α . Пунктирная горизонтальная линия соответствует параметру Хаббла $H_0 = 73 \text{ км с}^{-1} \text{ Мпк}^{-1}$.

Сплошная линия обозначает квадратичную регрессию.

спиральных галактик поздних типов. При этом в

массивных дисках преобразование газа в звезды происходило в прошлом примерно в два раза более

Следует отметить, что это различие нивелирует-

высокими темпами, чем в карликовых спиралях.

log L

10.5

log sSF $R_{H_{\alpha}}$

Рис. 3. Соотношение между оценками SFR, сделанными по $H\alpha$ и FUV-потокам для UF-галактик.

Рис. 4. Зависимость темпа звездообразования, определенного по а) Н α -потоку, b) потоку в FUV-полосе, от K-светимости галактик. Данные об Н α -потоках из литературы отмечены пустыми кружками. Пунктирная линия соответствует космическому времени 13.7 Gyr,за которое наблюдаемая звездная масса галактики воспроизводится при наблюдаемом темпе SFR. Линейные регрессии имеют наклон 0.87 ± 0.04 и 0.71 ± 0.06 для Н α и FUV-потоков соответственно.

ров. Минимальный линейный диаметр в нашей выборке, 13 кпк, имеет близкая карликовая Sd спираль RFGC 1700 = UGCA 193. Среди гигантских дисков наибольшим диаметром, 105 кпк, обладает Sbc галактика RFGC 1339 = UGC 4704. Медианное значение линейного диаметра UF-галактик составляет 44 кпк. Коррекция за наклон, принятая в HyperLEDA, уменьшает изофотный диаметр UFгалактики примерно в полтора раза.

Зависимость между водородной массой и Kсветимостью UF-галактик представлена на рис. 6. Как следует из этих данных, отношение $M_{\rm HI}/L_K$ систематически уменьшается от карликовых галактик к объектам высокой светимости. Такая закономерность указывает на то, что процесс преобразования газа в звезды был наиболее интенсивным у самых массивных дисков галактик. Отмеченный эффект не связан, очевидно, с наличием у галактик балджей, поскольку их вклад в светимость UF-галактик совсем невелик.

Сравнивая значения логарифма водородной массы для галактик, видимых анфас (Karachentsev

11.0

11.5

12.0

Рис. 6. Распределение ультра-плоских галактик по интегральной водородной массе и *К*-светимости.

апd Karachentseva 2019) и видимых с ребра, в одинаковых интервалах значений L_{K} -светимости, мы получили среднюю разность $\langle \lg M_{\rm HI} \rangle_{\rm faceon} - \langle \lg M_{\rm HI} \rangle_{\rm edgeon} = -0.08 \pm 0.06$. Отрицательная величина этой разности при типичном отношении $\lg(a/b) \simeq 1$ для UF-галактик указывает на то, что диски ультраплоских галактик практически прозрачны в линии 21 см, и поправка (12) для них является избыточной.

Верхняя и нижняя панели рис. 7 воспроизводят зависимость темпа звездообразования, определенного по $H\alpha$ и FUV потокам от водородной массы UF-галактик. Линии регрессии на них имеют наклон 1.27 ± 0.12 и 1.16 ± 0.08 , заметно меньший, чем ожидаемый 1.4 ± 0.1 по соотношению Schmidt-Kennicutt (Kennicutt 1998) для отдельных очагов звездообразования. Следует также отметить, что в отличие от диаграмм $SFR-L_K$ (рис. 3), на диаграммах $SFR-M_{\rm HI}$ дисперсия наблюдательных данных по FUV-потокам оказывается заметно меньшей, чем по $H\alpha$ -потокам. Мы не нашли объяснения этой особенности.

Сравнение изображений, представленных на рис. 2, показывает, что все без исключения UF-галактики выглядят в $H\alpha$ -фильтре более тонкими, чем в красном континууме. Это различие тем сильнее, чем ближе угол наклона галактики к $i = 90^{\circ}$. Рисунок 8 воспроизводит отношение a/b в линии $H\alpha$ и в красном континууме для 45 рассматриваемых галактик. Средние значения $\langle \lg(a/b)_{H\alpha} \rangle = 1.23 \pm 0.03$ и $\langle \lg(a/b)_r \rangle = 0.97 \pm 0.02$ показывают, что толщина эмиссионного диска в среднем почти в два раза меньше, чем толщина диска в красном континууме. Как известно, комплексы голубых горячих звезд, которые регулируют свечение H II-областей, имеют возраст примерно 10^7 лет. Следовательно,

Рис. 7. Зависимость темпа звездообразования, определенного по а) $H\alpha$ -потоку, b) потоку в FUV-полосе от водородной массы. Линейные регрессии имеют наклон 1.27 \pm 0.12 и 1.16 \pm 0.08 для $H\alpha$ и FUV-потоков соответственно.

формирование молодого звездного населения происходит в более тонком слое диска по сравнению с толщиной диска старого звездного населения. Этот вывод вполне ожидаем в картине образования молодых НІІ-комплексов при гравитационной нестабильности молекулярных газовых облаков.

Reshetnikov and Combes (1998) исследовали статистику S-образных искривлений в оптических изображениях плоских галактик каталога FGC. Согласно данным Reshetnikov and Combes (1998), такие искажения видны у 40% edge-on галактик, причем их частота возрастает с ростом плотности окружения RFGC-галактики. Последнее обстоятельство указывает на внешний, приливной характер искажений, видимых на окраинах дисков. В нашей выборке 45 UF-галактик мы обнаружили отчетливые искажения эмиссионного диска лишь у

Рис. 8. Видимое отношение осей в линии $H\alpha$ и в континууме для UF-галактик.

одной галактики, RFGC 1133 = UGC 3539², и слабые искажения у еще 6 галактик: RFGC 504, 531, 722, 1434, 3935 и 4039. Т.о. частота встречаемости искажений Н α -диска у ультра-плоских галактик, не более (16 ± 5)%, оказывается заметно меньше, чем у объектов каталога RFGC. Малый процент периферийных искажений в дисках ультраплоских галактик находится в согласии с фактом их предпочтительного нахождения в областях очень низкой плотности.

7. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Представленные результаты наблюдений в линии Н α ультраплоских галактик привели к многократному увеличению числа исследованных объектов этой категории. UF-галактики, видимые с ребра, имеют углы наклона оси вращения к лучу зрения в диапазоне $i \simeq (85-90)^\circ$, что при отсутствии значительных балджей соответствует видимому отношению осей a/b > 10 в синей области спектра. В эмиссионной линии Н α UF-галактики выглядят еще более тонкими, имея характерное отношение осей $\langle a/b \rangle_{\rm H}_{\alpha} \simeq 17$. Это свидетельствует о том, что молодое звездное население дисков галактик формируется в узком слое, толщина которого растет при переходе к более старому населению.

Внутреннее поглощение в UF-галактиках оказывается значительным. При характерном линейном диаметре около 44 кпк поглощение в линии $H\alpha$ достигает $1-2^{m}$, а в *FUV*-полосе — даже $3-4^{m}$. Следствием большого поглощения является тусклый вид UF-галактик в ультрафиолетовом обзоре неба GALEX. Использованная нами манера учета внутреннего поглощения приводит к хорошему согласию оценок темпа звездообразования, сделанных по Н α и *FUV*-потокам. В эмиссионной линии 21 см ультра-плоские галактики нашей выборки являются практически прозрачными.

Удельный темп звездообразования в UFгалактиках, отнесенный к единице K-светимости или звездной массы, показывает систематическое падение от $sSFR \sim -10.4$ dex при $L_K \sim 9$ dex до примерно -10.7 dex при $L_K \sim 11$ dex. Малая дисперсия на диаграмме $sSFR-L_K$ относительно линии регрессии указывает на единообразие процесса звездообразования в тонких дисках спиральных галактик.

Чтобы воспроизвести наблюдаемую звездную массу, средний темп звездообразования у карликовых и массивных UF-галактик должен был быть в прошлом выше в два и четыре раза соответственно, чем их современное значение *sSFR*.

Относительное содержание водородной массы в дисках UF-галактик в среднем составляет приблизительно 20%, меняясь от 50% у карликовых дисков до примерно 8% у массивных галактик. Следовательно, UF-галактики обладают запасами газа для поддержания наблюдаемых темпов звездообразования на протяжении еще нескольких миллиардов лет.

Искажения формы диска у UF-галактик встречаются заметно реже, чем у остальных галактик RFGC каталога, видимых с ребра. Нахождение UF-галактик в зонах низкой космической плотности согласуется с предположением, что многие искажения периферии спиральных галактик обусловлены приливным влиянием близких соседей.

БЛАГОДАРНОСТИ

В работе использованы данные обзоров неба GALEX и PanSTARRS, а также база внегалактических данных HyperLEDA.

ФИНАНСИРОВАНИЕ

Работа поддержана грантом РНФ 19-12-00145.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

²Эта галактика интеграло-образной формы является весьма изолированной. Ближайшая ее соседка, галактика CGCG 308-039, имеет разность лучевых скоростей 228 км с⁻¹ и проекционное расстояние 410 кпк.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. Banerjee and C. J. Jog, Monthly Notices Royal Astron. Soc. **431** (1), 582 (2013).
- E. F. Bell, D. H. McIntosh, N. Katz, and M. D. Weinberg, Astrophys. J. Suppl. 149 (2), 289 (2003).
- 3. M. S. Bothwell, R. C. Kennicutt, and J. C. Lee, Monthly Notices Royal Astron. Soc. **400** (1), 154 (2009).
- K. C. Chambers, E. A. Magnier, N. Metcalfe, et al. arXiv:1612.05560 (2016).
- 5. B. M. Devour and E. F. Bell, Monthly Notices Royal Astron. Soc. **459** (2), 2054 (2016).
- 6. G. Gavazzi, G. Consolandi, E. Viscardi, et al., Astron. and Astrophys. **576**, A16 (2015).
- 7. A. Gil de Paz, S. Boissier, B. F. Madore, et al., Astrophys. J. Suppl. **173** (2), 185 (2007).
- 8. T. H. Jarrett, T. Chester, R. Cutri, et al., Astron. J. **119** (5), 2498 (2000).
- 9. T. H. Jarrett, T. Chester, R. Cutri, et al., Astron. J. 125 (2), 525 (2003).
- M. G. Jones, M. P. Haynes, R. Giovanelli, and C. Moorman, Monthly Notices Royal Astron. Soc. 477 (1), 2 (2018).
- I. D. Karachentsev, S. S. Kaisin, and E. I. Kaisina, Astrophysics 58 (4), 453 (2015).
- I. D. Karachentsev, E. I. Kaisina, and D. I. Makarov, Monthly Notices Royal Astron. Soc. 479 (3), 4136 (2018).
- I. D. Karachentsev and V. E. Karachentseva, Monthly Notices Royal Astron. Soc. 485 (1), 1477 (2019).

- 14. I. D. Karachentsev, V. E. Karachentseva, and Y. N. Kudrya, Astrophysical Bulletin **71** (2), 129 (2016).
- I. D. Karachentsev, V. E. Karachentseva, Y. N. Kudrya, et al., Bulletin of the Special Astrophysical Observatory 47, 5 (1999).
- 16. V. E. Karachentseva, Y. N. Kudrya, I. D. Karachentsev, et al., Astrophysical Bulletin **71** (1), 1 (2016).
- R. C. Kennicutt, Annual Rev. Astron. Astrophys. 36, 189 (1998).
- 18. R. C. Kennicutt, J. C. Lee, J. G. Funes, et al., Astrophys. J. Suppl. **178** (2), 247 (2008).
- 19. J. C. Lee, A. Gil de Paz, R. C. Kennicutt, et al., Astrophys. J. Suppl. **192** (1), 6 (2011).
- 20. J. C. Lee, A. Gil de Paz, C. Tremonti, et al., Astrophys. J. **706** (1), 599 (2009).
- 21. D. Makarov, P. Prugniel, N. Terekhova, et al., Astron. and Astrophys. **570**, A13 (2014).
- 22. O. V. Melnyk, V. E. Karachentseva, and I. D. Karachentsev, Astrophysical Bulletin 72 (1), 1 (2017).
- 23. V. Reshetnikov and F. Combes, Astron. and Astrophys. **337**, 9 (1998).
- 24. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500 (2), 525 (1998).
- 25. E. J. Shaya, R. B. Tully, Y. Hoffman, and D. Pomarède, Astrophys. J. **850** (2), 207 (2017).
- 26. O. Spector and N. Brosch, Monthly Notices Royal Astron. Soc. **469** (1), 347 (2017).
- 27. M. A. W. Verheijen and R. Sancisi, Astron. and Astrophys. **370**, 765 (2001).

$H\alpha$ Images of Ultra-Flat Edge-On Spiral Galaxies

S. S. Kaisin, I. D. Karachentsev, H. Hernandez-Toledo, L. Gutierrez, and V. E. Karachentseva

We present the H α images of ultra-flat (UF) spiral galaxies seen practically edge-on. The galaxies have the angular diameter in the *B* band a > 1 '9 and the apparent axial ratio (a/b) > 10. We found that their H α images look, on average, almost two times thinner than those in the red continuum. The star-formation rate in the studied objects, determined from the H α flux, is in good agreement with that calculated from the *FUV* flux from the GALEX survey if we use the modified Verheijen and Sancisi formula taking into account the internal extinction in the UF galaxies. The logarithm of the specific star-formation rate in the UF galaxies shows a small scatter, 0.19, with a smooth decrease from -10.4 for dwarf spirals to -10.7 for massive ones. The relative amount of the hydrogen mass in UF disks varies from about 50% in dwarf disks to about 8% in massive ones. Structural distortions are less common in the UF galaxies (about 16%) than those in thick (less isolated) disks of edge-on spiral galaxies. On the cosmic time scale, 13.7 Gyr, large spiral disks are more efficient "engines" for gas processing into stars than dwarf spirals.

Keywords: galaxies: spiral—galaxies: star formation