Liudmila Fesik Saint Petersburg State University

The International Conference SN 1987A, Quark Phase Transition in Compact Objects and Multimessenger Astronomy 2–8 July 2017

Outline

Analysis of polarization states of GWs

Gravitation theories and polarization of gravitational waves Polarization states of GWs in modern gravitation theories

Method for GW source localization

Antenna-response functions of an interferometric antenna Description of the method

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

Application of the method to the LIGO events 2015-2017

Results in the Equatorial CS Representation in the Local Super-Cluster Results in the Supergalactic CS

Method for determining a polarization state of a GW

Analysis of polarization states of GWs

Gravitation theories and polarization of gravitational waves

Gravitation theories and polarization of gravitational waves

Einstein's geometrical approach:

Gravitational potentials: <u>metric tensor</u> of the curved Riemannian spacetime.

- ► General Relativity (GR, "geometrodynamics"), Einstein (1916) ⇒ only tensor "plus" and "cross" GWs
- Modified GR: scalar-tensor metric theories, e.g. Brans-Dicke Theory reviews: Will (2014); Clifton et al. (2012)
 ⇒ tensor and scalar GWs

Feynman's field approach:

Gravitational potentials: symmetric second rank tensor field in the flat Minkowski spacetime.

► Field Gravitation Theory (FGT, "gravidynamics"), Feynman (1971) modern reviews: Sokolov and Baryshev (1980); Baryshev (2017) ⇒ tensor and scalar longitudinal GWs.

Analysis of polarization states of GWs

Gravitation theories and polarization of gravitational waves

Sources and polarization of gravitational waves

Sources and polarization states of GWs

- ► coalescing compact binaries (CBC) ⇒ tensor transverse GWs;
- ► core-collapse supernovae (CCSN): asymmetric ⇒ tensor transverse GWs; spherically-symmetric ⇒ scalar GWs.

Expected waveforms

In both cases – a sinusoidal waveform with changing frequency.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Analysis of polarization states of GWs

Polarization states of GWs in modern gravitation theories

Polarization states in scalar-tensor theories of gravitation

Puc.: Response of test masses on a polarization state of an incoming GW (Will (2014))

Puc.: Equatorial and horizontal coordinate systems of an interferometric antenna for a GW source S

- Method for GW source localization

Antenna-response functions of an interferometric antenna

Antenna-response functions of an interferometric antenna

A general strain of an incoming GW of different polarization states:

$$\begin{split} \bar{h} &= \\ F_{+}(\zeta, \Phi, \Psi)h_{+}(t) + F_{\times}(\zeta, \Phi, \Psi)h_{\times}(t) + \\ &+ F_{\mathsf{SL}}(\zeta, \Phi)h_{\mathsf{SL}}(t) + F_{\mathsf{ST}}(\zeta, \Phi)h_{\mathsf{ST}}(t) \\ &(1) \end{split}$$

Z is the zenith, P – the northern pole, γ defines the sidereal time, α – the right ascension (RA), δ – the declination (DEC), ζ – the zenith angle. The reference direction of the detector is the direction OX with the azimuth Φ_0 .

PMC.: Equatorial and horizontal coordinate systems of an interferometric antenna for a GW source S

- Method for GW source localization

Antenna-response functions of an interferometric antenna

Antenna-response functions on a tensor transverse GW

Antenna-response functions on tensor transverse "+" $F_+(\zeta, \Phi, \Psi)$ and "×" $F_{\times}(\zeta, \Phi, \Psi)$ GW of a two-arms interferometric antenna (Will (2014)):

$$F_{+}(\zeta, \Phi, \Psi) = \frac{1}{2}(1 + \cos^{2}\zeta)\cos 2\Phi \cos 2\Psi - \cos\zeta \sin 2\Phi \sin 2\Psi$$
(2a)
$$F_{\times}(\zeta, \Phi, \Psi) = \frac{1}{2}(1 + \cos^{2}\zeta)\cos 2\Phi \sin 2\Psi + \cos\zeta \sin 2\Phi \cos 2\Psi$$
(2b)

(a) on a tensor + GW (b) on a tensor, " $X_{\mathcal{B}}^{"}GW_{\mathbb{R}}$, $A \in \mathbb{R}^{+}$ and $A \in \mathbb{R}^{+}$

- Method for GW source localization

Antenna-response functions of an interferometric antenna

Antenna-response functions on a scalar GW

Antenna-response functions on scalar longitudinal $F_{SL}(\zeta, \Phi)$ and transverse $F_{ST}(\zeta, \Phi, \Psi)$ GW of an interferometric antenna: with two-arms (2-arms mode) (*Will (2014)*):

$$F_{SL}(\zeta, \Phi) = \frac{1}{2} \sin^2 \zeta \cos 2\Phi \qquad (3a)$$
$$F_{ST}(\zeta, \Phi) = -\frac{1}{2} \sin^2 \zeta \cos 2\Phi \qquad (3b)$$

with one-arm (1-arm mode):

$$F_{SL}(\zeta, \Phi) = \cos \Theta = \sin \zeta \cos \Phi \qquad (4a)$$

$$F_{ST}(\zeta, \Phi) = \sin \Theta \qquad (4b)$$

The one-arm modification can distinguish between longitudinal and <u>transverse</u> scalar GW modes.

Localization of gravitational waves as a test of gravitation theories \sqsubseteq Method for GW source localization

Description of the method

Description of the method

The method is based on:

- ▶ time delay △ between a GW arrival;
- antenna-response on a polarization state of an incoming GW for each detector;
- positions of the antennas at the arrival sidereal time (ST);
- the ratio of the detected strains h₁/h₂ on the antennas couple:

$$h(t) = \frac{\Delta L(t)}{L_0} = h^0 s(t) G(\zeta, \Phi, \Psi) \quad (5)$$

$$\frac{h_1}{h_2} = \frac{G_1}{G_2} = \frac{G(\zeta_1, \Phi_1, \Psi_1)}{G(\zeta_2, \Phi_2, \Psi_2)}$$
(6)

Puc.: Equatorial and horizontal coordinate systems of an interferometric antenna for a GW source S

Method for GW source localization

Description of the method

Application of the method step-by-step

The order of application for a detected GW event:

- 1. Construction of an apparent circle (AC) of possible source positions on the sky by the arrival time delay Δ .
- 2. Calculation of G-factors $G(\zeta, \Phi, \Psi)$ for each point of the AC and each antenna in the network.
- 3. Selection such points at the AC where the calculated G-factors ratio G_1/G_2 corresponds the observed strains ratio h_1/h_2 within an observational error.

$$\frac{h_1}{h_2} \approx \frac{G_1}{G_2} \tag{7}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Localization of gravitational waves as a test of gravitation theories Application of the method to the LIGO events 2015–2017

The GW events detected by aLIGO in 2015-2017

Таблица: Data of the LIGO events 2015–2017. ST is the sidereal time of the event, h^0 – the strain as a maximal amplitude normalized by 10^{-21} , $\Delta_{\rm LH}$ – the time delay between registrations at Livingston and Hanford antennas.

GW event	UTC	ST [hrs]	$\Delta_{\rm LH}$ [ms]	h^0
GW150914	09:50:45	3.3315	$6.9^{+0.5}_{-0.4}$	0.6
LVT151012	09:54:43	5.2377	-0.6 ± 0.6	0.3
GW151226	03:38:53	3.8851	1.1 ± 0.3	0.3
GW170104	10:11:59	11.1	$-3.0^{+0.4}_{-0.5}$	0.3

The main selection condition

for the current GW events detected by Livingston (L) and Hanford (H) antennas:

$$\frac{h_L}{h_H} \approx \frac{G_L}{G_H} \approx 1 \pm 10\% \tag{8}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Localization of gravitational waves as a test of gravitation theories Application of the method to the LIGO events 2015–2017

An example of a source position selection

Localization of gravitational waves as a test of gravitation theories Application of the method to the LIGO events 2015–2017 Results in the Equatorial CS

Localization of GW sources

in Equatorial CS for scalar polarization

Localization of gravitational waves as a test of gravitation theories Application of the method to the LIGO events 2015–2017 Results in the Equatorial CS

Localization of GW sources

in Equatorial CS for tensor "+" polarization

Application of the method to the LIGO events 2015–2017

- Representation in the Local Super-Cluster

2MRS catalogue and the Local Super-Cluster

The 2MRS catalogue

- the result of 2MASS all-sky IR survey;
- contains redshifts of 43 533 galaxies

The supergalactic coordinate system (SG) has the North Pole $SGB = 90^{\circ}$ with galactic coordinates $I = 47.37^{\circ}$, $b = 6.32^{\circ}$ (?).

The Local Super-Cluster (LSC)

- \blacktriangleright a spatial distribution of galaxies within \sim 100 Mpc;
- ▶ a filamentary disc-like structure with the radius ~ 100 Mpc, thickness ~ 30 Mpc;
- the center roughly in the Virgo cluster ($SGL = 104^{\circ}$; $SGB = 22^{\circ}$);

The used sample covers 32656 galaxies from the 2MRS with $z \le 0.025$ (until 100 Mpc) corresponding to the LSC.

Localization of gravitational waves as a test of gravitation theories Application of the method to the LIGO events 2015–2017 Results in the Supergalactic CS

Localization of GW sources

in the Supergalactic CS for a scalar polarization

Localization of gravitational waves as a test of gravitation theories Application of the method to the LIGO events 2015–2017 Results in the Supergalactic CS

Localization of GW sources

in the Supergalactic CS for a tensor "+" polarization

Localization of gravitational waves as a test of gravitation theories Method for determining a polarization state of a GW

Method for determining a polarization state of a GW

Application of the method in the case of three operating anntennas: LIGO Livingston (L), LIGO Hanford (H) and Virgo (V) at the time of GW151226.

Polarization state	$G_{ m L}$	$G_{ m H}$	$G_{ m V}$	$\Delta_{ m LH}$	$\Delta_{ m LV}$	$\Delta_{ m VH}$
$RA = 11.6^{h} DEC = 30.3^{\circ}$					-23.35	-0.97
Tensor +, $\Psi = 0$	0.376	-0.356	-0.608			
Scal. long. or trans.	0.373	-0.346	-0.029			
Scal. long. (1-arm)	-0.933	0.384	-0.128			
Scal. trans. (1-arm)	0.359	0.924	0.992			
$RA = 18^h DEC = 32^\circ$					-11.53	-25.23
Tensor +, $\Psi = 0$	-0.525	0.468	0.190			
Scal. long. or trans.	-0.409	0.460	0.181			
Scal. long. (1-arm)	0.169	0.977	0.819			
Scal. trans. (1-arm)	0.985	0.212	0.574			

Localization of gravitational waves as a test of gravitation theories Method for determining a polarization state of a GW

Simulated construction of ACs for the network L-H-V

for the source $RA = 11.6^{h}$; $DEC = 30.3^{\circ}$ in the Supergalactic CS

Summary and Outlook

- Source localization determined by an antenna-response is different depending on possible polarization states of incoming GWs.
- A network of LIGO-type two-arms antennas can distinguish between tensor and scalar, but not between scalar longitudinal and transverse polarizations, which is possible by means of one-arm interferometric detectors.
- ► For three aLIGO events: GW150914, GW 151226 and LVT151012, the AC of the allowed GW source positions are parallel to the supergalactic (SG) plane of the Local Super-Cluster of galaxies. If these GW sources are related to the LSC, then we have to consider distances to them within ~ 100 Mpc.
- There should be taken search for EM counterparts along a whole AC of a considered GW event.

Localization of gravitational waves as a test of gravitation theories Corresponding articles

Corresponding articles

- Fesik L.E., "Polarization states of gravitational waves detected by LIGO-Virgo antennas", 2017. arXiv:1706.09505 [gr-qc]
- Fesik L.E., Yu. V. Baryshev, V. V. Sokolov, G. Paturel, "LIGO-Virgo events localization as a test of gravitational wave polarization state", 2017. arXiv:1702.03440v2 [gr-qc]
- Yu. V. Baryshev and G. Paturel. "Statistics of the detection rates for tensor and scalar gravitational waves from the local galaxy universe" Astron. Astrophys., 371:378, 2001

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Bibliography

Bibliography I

- A. Einstein, "Approximative Integration of the Field Equations of Gravitation", *Preuss. Akad. Wiss. Berlin, Sitzber.* **688** (1916).
- M. Will, "The Confrontation between General Relativity and Experiment", *Living Rev. Relativity* **17** (2014), no. 4, arXiv:1403.7377.
- T. Clifton *et al.*, "Modified gravity and cosmology", *Phys. Rep.* **513** (2012) 1.
- R. Feynman, "Lectures on gravitation", California Institute of Technology, 1971.
- V. Sokolov and Y. Baryshev, "Field-theoretical approach to gravitation: energy-momentum tensor of the field", *Kazan State University* **17** (1980) 34.
- Y. V. Baryshev, "Foundation of relativistic astrophysics: Curvature of Riemannian Space versus Relativistic Quantum Field in Minkowski Space", arXiv:1702.02020.

Приложение

Bibliography

Thank you for your attention!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Приложение

— Bibliography

Simulated statistics of the events

Рис.: Statistics of occurrence ACs by GW sources along the SG plane within the sources along the SG plane within the sources along the so