Моделирование орбитального движения тел вокруг Sgr A\* и проблема определения расстояния до центра Галактики

#### И. И. Никифоров, А. В. Веселова

Санкт-Петербургский государственный университет

«Современная звездная астрономия» Нижний Архыз, САО РАН, 9 октября 2019 г.

# Моделирование орбитального движения вокруг Sgr A\* и проблема $R_0$

Классы измерений расстояния до центра Галактики  $(R_0)$  по способам определения опорных расстояний.

- Эмпирические:
  - а) относительные (шкалы расстояний с эмпирическими калибровками),
  - б) абсолютные (геометрические расстояния).
- Теоретические (шкалы расстояний с теоретическими калибровками, ныне не актуальные).

Моделирование орбитального движения тел вокруг Sgr A\*  $\rightarrow$  абсолютное расстояние до центрального объекта, т.е.  $\approx R_0$ , с высокой (!) внутренней точностью.

4 3 4 4 3

#### Мониторинг звездных орбит в центре Галактики. І

 $A_V \sim 30 \div 50 \Longrightarrow$  Наблюдения в ИК-диапазоне:  $A_K \approx 3$ .

- Спекл-изображения центрального скопления Галактики:
  - с 1991 г. германской группой (MPE–Cologne) на ESO NTT, с 2002 г. — на ESO VLT;
  - с 1995 г. (американской) группой Andrea Ghez (UCLA) на Keck I, Keck II.

 $\implies$  Обнаружение больших собственных движений ( $\gtrsim 10^3~{\rm кm/c})$  "S-звезд" вокруг Sgr A\*.

[«Sgr A\*» <sup>def</sup> компактный темный массивный объект, расположенный в направлении на радиоисточник Sgr A\* = **«центральная (сверх)массивная черная дыра**».]

 Salim & Gould (1999): моделирование вращения S-звезд вокруг Sgr A\* (только метод) → возможность точного нахождения абсолютного расстояния до Sgr A\*.

#### Мониторинг звездных орбит в центре Галактики. П

 Начало 2000-х гг.: звезда S2/S0-2 оказалась самой короткопериодической и ярчайшей из близких к Sgr A\*.

Звезда S0-2 (S2): B2.5V,  $K = 14.2, P = 16.041 \pm 0.002$  года (Boehle+, 2016; Do+, 2019); K = 13.95, P = 16.052 года (Gillessen+, 2017; GC, 2018); прохождения перицентра: апрель 2002 г., 19.05.2018 09:50 UTC (GC19); a = 0.12 сд = 0.005 пк  $\approx 1010$  а.е.,  $r_{\rm a} \approx 1910$  а.е.,  $r_{\rm p} \approx 110$  а.е. (Ghez+, 2008; Plewa, Sari, 2018);  $a = 125.066 \pm 0.084$  мсд,  $r_{\rm p} = 17$  св. ч  $\approx 14$  мсд = 120 а.е.,  $V_p \approx 7650$  км/с (GC, 2018, 2019).

• Появление спектроскопии на основе техники адаптивной оптики  $\rightarrow$ Ghez et al. (2003, *UCLA*): первое измерение лучевой скорости звезды S2  $\rightarrow$ Возможность полного решения задачи: в частности, определение  $R_0$  и массы Sgr A\*,  $\mathcal{M}(BH)$ . Первые полные решения (германской группой).

• Eisenhauer et al. (2003) по 5  $V_r$  и 19  $(\alpha, \delta)$ :

 $R_0 = 7.94 \pm 0.42$ кпк,  $\mathcal{M}({
m BH}) = (3.59 \pm 0.59) \times 10^6 \mathcal{M}_{\odot}$ .

• Eisenhauer et al. (2005) по 7  $V_r$  и 21  $(\alpha, \delta)$ :

 $R_0 = 7.62 \pm 0.32$  кпк,  $\mathcal{M}({
m BH}) = (3.61 \pm 0.32) imes 10^6 \mathcal{M}_{\odot}$  .

Но это в предположении, что лучевая скорость Sgr A\* (фокуса орбиты)  $V_r(BH) = 0 \text{ км/с относительно МСП (!), основанном на «сильных наблюдательных ограничениях сверху» на собственное движение (!) Sgr A* — 20–60 км/с.$ 

N. (2008, 2012): игнорирование ненулевой лучевой скорости фокуса орбиты (Sgr A\*) ведет к пропорциональному смещению  $R_0$  (по единственному измерению лучевой скорости звезды  $V_{\rm LSR}$ ):

$$\delta_{\text{sys}} \equiv \frac{\sigma_{\text{sys}}(V_{\text{LSR}})}{|V_{\text{LSR}}|} = \frac{V_{\text{LSR}}(\text{BH})}{|V_{\text{LSR}}|} = \frac{\sigma_{\text{sys}}(R_0)}{R_0}.$$
 (1)

$$V_{\text{Sgr A}*} = 20 \div 60 \text{ км/с} \Longrightarrow$$
  
 $\sigma_{\text{sys}}(R_0) = 1.3 \div 5.6 \% = (0.1 \div 0.45 \text{ кпк}) \cdot (R_0/8 \text{ кпк}).$ 

Ghez et al. (2008) по 16 
$$V_r$$
 и 27  $(l, b)$  для S0-2 (S2):  
 $V_{\text{LSR}}(\text{BH}) = -20^{+29}_{-37} \text{ км/c}, \quad R_0 = 7.96^{+0.57}_{-0.70} \text{ кпк},$   
 $\mathcal{M}(\text{BH}) = (4.07^{+0.52}_{-0.78}) \cdot 10^6 \mathcal{M}_{\odot};$   
 $V_{\text{LSR}}(\text{BH}) = (0 \text{ км/c}) \implies \quad R_0 = 8.36^{+0.30}_{-0.44} \text{ кпк},$   
 $\mathcal{M}(\text{BH}) = (4.53^{+0.30}_{-0.55}) \cdot 10^6 \mathcal{M}_{\odot}.$ 

э

3 🖌 🖌 3

Gillessen et al. (2009): по 6 S-звездам, включая S2  $V_{\rm LSR}({\rm BH}) = (0 \pm 5 \text{ km/c}) \Rightarrow$  $R_0 = 8.33 \pm 0.17$ кпк,  $\mathcal{M}(\mathsf{BH}) = (4.31 \pm 0.22) \cdot 10^6 \mathcal{M}_{\odot};$ только по S2  $V_{\rm LSR}({\rm BH}) = (0 \pm 5 \text{ km/c}) \Rightarrow R_0 = 8.48 \pm 0.38 \text{ kmk},$  $\mathcal{M}(\mathsf{BH}) = (4.45 \pm 0.41) \cdot 10^6 \mathcal{M}_{\odot};$  $V_{\rm LSR}({\rm BH}) = +29 \pm 36$  km/c,  $R_0 = 8.80 \pm 0.53$  кпк,  $\mathcal{M}(Sgr A*) = (4.93 \pm 0.75) \cdot 10^6 \mathcal{M}_{\odot};$ только по S2 (без данных 2002 г.)  $V_{\rm LSR}({\rm BH}) = (0 \pm 5 \text{ km/c}) \Rightarrow$  $R_0 = 7.31 \pm 0.45$  кпк,  $\mathcal{M}(\mathsf{BH}) = (3.51 \pm 0.36) \cdot 10^6 \mathcal{M}_{\odot}$ :  $V_{\rm LSR}({\rm BH}) = -42 \pm 44 \,\,{\rm km/c},$  $R_0 = 6.63 \pm 0.91$  кпк,  $\mathcal{M}(\mathsf{BH}) = (2.85 \pm 0.74) \cdot 10^6 \mathcal{M}_{\odot}.$ 

- E - - E -

Зависимость  $R_0$  от  $V_r^{\text{LSR}}(\text{BH})$ 



9/37

### ИК-интерферометрия. І

- 2005 r.: GRAVITY Collaboration = MPE + LESIA (Paris Observatory+) + IPAG (Université Grenoble Alpes+)+ University of Cologne + CENTRA (Universidade de Lisboa, Portugal) + ESO предложила новый инструмент — GRAVITY на интерферометре VLTI ESO, состоящем из четырех 8-м основных телескопов (unit telescopes) ЕЮО; концепция аналогична радиоинтерферометрии, по сравнению с которой в оптическом/ИК-диапазоне есть принципиальные ограничения из-за меньшей длины волны; понадобился значительный технический прогресс, чтобы их преодолеть.
- 2016 г. первый свет; по угловому разрешению инструмент эквивалентен 130-м телескопу, эквивалентная собирающая площадь 200 м<sup>2</sup> (16-м телескоп =  $4 \times 8$ -м телескоп); предельная величина  $K \approx 17$  (на 2.2 мкм).

#### ИК-интерферометрия. II

 С 2017 г. — GRAVITY Collaboration выполняет оптическую/ИК-интерферометрию в рамках мониторинга орбит S-звезд. Точность астрометрии 20–150 мксд (увеличение точности с эпохи спекл на два порядка, ежедневно видят изменения положения S2).

#### GRAVITY Collaboration (2019).

Методы:  $\chi^2$ -минимизация, модель шума от нераспознанных звезд. Непосредственный учет релятивистских поправок — гравит. красного смещения и трансверсального доплеровского эффекта. Учет эффекта Рёмера. Поправки первого порядка от Шварцшильдовской метрики.

 ${\cal A}$ ля S0-2 в варианте с моделью шума (noise model fit):  $R_0 = 8178 \pm 13_{\text{stat.}} \pm 22_{\text{sys.}}$  пк ( $\pm 26$  пк),  ${\cal M}(\text{Sgr A*}) = (4.152 \pm 0.014) \times 10^6 {\cal M}_{\odot}$ ,  $V_r(\text{Sgr A*}) = -3.0 \pm 1.5$  км/с.

A B A A B A

Очевидно, еще нет... Что еще нужно?

- Результаты по S2/S0-2 внутри каждой группы должны перестать «эволюционировать» со временем.
- Результаты по S2/S0-2, полученные двумя группами, должны согласовываться друг с другом. (Желательно появление какой-то третьей независимой группы.) Но это лишь результаты по одной звезде!
- Должны появится столь же надежные и согласующиеся результаты (в обеих группах) хотя бы по какой-нибудь еще S-звезде или даже по всей совокупности S-звезд, но без S2/S0-2. И эти результаты должны согласовываться с результатами по S2/S0-2.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

### Решает ли это проблему $R_0$ ? II

GRAVITY Collaboration (2019). Для SO-2 :  $R_0 = 8178 \pm 13_{\text{stat}} \pm 22_{\text{sys}}$  пк (±26 пк),  $\mathcal{M}(\text{Sgr A*}) = (4.152 \pm 0.014) \times 10^6 \mathcal{M}_{\odot}$  $V_r(\text{Sgr A*}) = -3.0 \pm 1.5 \text{ км/c}.$ Do+ (2019). Для S0-2:  $R_0 = 7.971 \pm 0.059_{\text{stat.}} \pm 0.032_{\text{sys.}}$  пк (±67 пк),  $\mathcal{M}(\text{Sgr A}^*) = (3.984 \pm 0.058 \pm 0.026) \times 10^6 \mathcal{M}_{\odot}$  $V_r(\text{Sgr A*}) = -3.6 \pm 3.7 \text{ км/с}$  $\Upsilon = 0.80 \pm 0.16 \pm 0.047$  (параметр красного смещения).  $R_0 = 7.946 \pm 0.050 \,(\text{stat.}) \pm 0.032 \,(\text{sys.})$  кпк,  $\Upsilon = 1.$ 

#### Разница по $R_0$ значима на уровне $3.6\sigma!$

## Эволюция оценок $V_r^{\mathsf{LSR}}(\mathsf{BH})$



## Эволюция оценок $R_0$ по орбитам S-звезд $[V^{\mathsf{LSR}}_r(\mathsf{BH}) eq 0]$



Находится ли Sgr A\* (точно) в барицентре Галактики? I

 $\Longrightarrow$  Можно ли связать с Sgr A\* инерциальную систему Галактоцентрических координат?

Есть разные точки зрения.

 Reid (2003), Reid & Brunthaler (2004), Reid (2008), Bland-Hawthorn & Gerhard (2016), GRAVITY Collaboration и др.: Sgr A\* покоится относительно динамического центра Галактики (в пределах неопределенности).

Основной аргумент: незначимо отличное от нуля пекулярное собственное движение Sgr A\*,  $\mu_{\rm pec}({\rm BH}) = \left(\mu_l^0({\rm BH}), \mu_b^{\rm LSR}({\rm BH})\right).$ 

. . . . . . .

Находится ли Sgr A\* (точно) в барицентре Галактики? II

• Точное совпадение Sgr A\* с барицентром Галактики не доказано.

Blitz (1994): на статус динамического центра могут претендовать и другие центральные концентрации масс, например, Sgr B2. Нельзя исключить, что они совершают осцилляции относительно точки минимума потенциала диска и сфероида Галактики. Центральность Sgr A\*, по крайней мере на указанных масштабах, объективно нельзя считать бесспорной.

Аргументы:

- Нулевая вертикальная скорость  $V_b^{\text{LSR}}(\text{BH})$  не обязательно означает отсутствие вертикальных осцилляций Sgr A\*.
- Современные измерения не исключают  $|V^0_l(\mathsf{BH})|$  порядка нескольких км/с.
- $V_b^{\text{LSR}}(\text{BH}) = V_l^0(\text{BH}) = 0$  км/с не исключают ненулевую лучевую скорость  $V_r^0(\text{BH})$ .

伺 ト イヨ ト イヨト

## Находится ли Sgr A\* (точно) в барицентре Галактики? III

- Кондратьев, Орлов (2008): за счет сближений с шаровыми скоплениями амплитуда дрейфа центральной черной дыры нашей Галактики может достигать нескольких парсек.
- Batcheldor+ (2010): черная дыра в М87 смещена на  $6.8\pm0.8$  пк от центра.
- Di Cintio+ (2019) исследовали динамику сверхмассивных черных дыр (СМЧД) в ядрах галактик при помощи полуаналитической модели, включающей динамическое трение и гравитационное взаимодействие со звездами: СМЧД испытывает движение броуновского вида и достигает (наблюдаемого) смещения  $\approx 6$  пк за  $10^{10}$  лет. Comerford & Greene (2014): активные ядра галактик, испытывающие мерджер, имеют кинематические смещения ядра относительно вмещающей галактики (50 < |v| < 410 км/с).

A B A A B A

### Данные измерений пекулярной скорости Sgr A\*. I

Пекулярная скорость Sgr A\*:  $\mathbf{V}_{pec}(BH) = (V_r^{LSR}(BH), V_l^0(BH), V_b^{LSR}(BH)).$ 

Пекулярная скорость Солнца относительно Местного стандарта покоя (МСП, LSR)

| $u_{\odot}^{LSR}$ ,     | $v^{LSR}_{\odot}$ ,                                                           | $w^{LSR}_{\odot}$ ,                                                                                                                                                                             |
|-------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| км/с                    | км/с                                                                          | км/с                                                                                                                                                                                            |
| $11.10^{+0.69}_{-0.75}$ | $12.24\pm0.47$                                                                | $7.25\substack{+0.37 \\ -0.36}$                                                                                                                                                                 |
| $10.0 \pm 1$            | $11.0\pm2$                                                                    | $7.0\pm0.5$                                                                                                                                                                                     |
|                         |                                                                               |                                                                                                                                                                                                 |
|                         | $u_{\odot}^{\text{LSR}}$ ,<br>км/с<br>$11.10^{+0.69}_{-0.75}$<br>$10.0 \pm 1$ | $\begin{array}{ccc} u_{\odot}^{\text{LSR}}, & v_{\odot}^{\text{LSR}}, \\ \textbf{KM/c} & \textbf{KM/c} \\ \hline 11.10^{+0.69}_{-0.75} & 12.24 \pm 0.47 \\ 10.0 \pm 1 & 11.0 \pm 2 \end{array}$ |

• Гелиоцентр. скорость  $V_r(BH) = V_r^{LSR}(BH) - u_{\odot}^{LSR} \Longrightarrow V_r^{LSR}(BH) = V_r(BH) + u_{\odot}^{LSR}$ . GRAVITY Collaboration (2019):  $V_r^{LSR}(BH) = -3.0 \pm 1.5 \text{ км/с при } u_{\odot} = 11.10 \text{ км/с,}$   $V_r^{LSR}(BH) = -4.1 \pm 1.5 \text{ км/с при } u_{\odot} = 10.0 \text{ км/с.}$  $(V_r(BH) = -14.1 \pm 1.5 \text{ км/с.})$ 

#### Данные измерений пекулярной скорости Sgr A\*. II

• 
$$\mu_l(\mathsf{BH}) = \mu_l^0(\mathsf{BH}) - \omega_{\odot}, \qquad \omega_{\odot} = \omega_0 + v_{\odot}/R_0,$$

 $\omega_{\odot}$  — угловая скорость Солнца,

 $\omega_0$  — угловая скорость нелокального стандарта покоя центроида звезд,

 $v_{\odot}$  — остаточная скорость Солнца относительно этого стандарта  $\Longrightarrow$  $\mu_l^0(\mathsf{BH}) = \mu_l(\mathsf{BH}) + \omega_{\odot},$  $V_l^0(\mathsf{BH}) = \mu_l^0(\mathsf{BH})R_0 = [\mu_l(\mathsf{BH}) + \omega_{\odot}]R_0.$ Reid & Brunthaler (2004):  $\mu_l(\mathsf{BH}) = -6.379 \pm 0.026 \text{ мсд/год} = -30.24 \pm 0.12 \text{ км/с/кпк}$ (при k = 4.7406)  $\implies$  При  $R_0 = 8$  клк Работа  $V_0(\mathsf{BH}),$  $\omega_{\odot}$ , км/с/кпк км/с Reid+ (2014)  $30.57 \pm 0.43$   $+2.6 \pm 3.6$ Расторгуев+ (2017)  $30.72 \pm \le 0.47$  |  $+3.8 \pm \le 3.9$ . . .  $31.16 \pm < 0.54 | +7.4 \pm < 4.4$ 

Движение тел вокруг Sgr A\* и проблема  ${f R}_0$ 

#### Данные измерений пекулярной скорости Sgr A\*. III

• 
$$\mu_b(\mathsf{BH}) = \mu_b^{\mathsf{LSR}}(\mathsf{BH}) - w_{\odot}^{\mathsf{LSR}}/R_0 \Longrightarrow$$
  
 $V_b^{\mathsf{LSR}}(\mathsf{BH}) = V_b(\mathsf{BH}) + w_{\odot}^{\mathsf{LSR}} = \mu_b(\mathsf{BH})R_0 + w_{\odot}^{\mathsf{LSR}}.$   
Reid & Brunthaler (2004):  
 $\mu_b(\mathsf{BH}) = -0.202 \pm 0.019 \text{ мсд/год} = -0.958 \pm 0.090 \text{ км/с/кпк}$   
 $\Longrightarrow$ 

| $w_{\odot}^{LSR}$ , | $V_b^{LSR}(BH)$ , км/с |                |                |  |
|---------------------|------------------------|----------------|----------------|--|
| км/с                | $R_0=7.8\;$ кпк        | $R_0=8$ кпк    | $R_0=8.2$ кпк  |  |
| 7.25                | $-0.22 \pm 0.70$       | $-0.41\pm0.72$ | $-0.61\pm0.74$ |  |
| 7.0                 | $-0.47\pm0.70$         | $-0.66\pm0.72$ | $-0.86\pm0.74$ |  |

< 注 → < 注 → □ 注

Задача: оценить размах возможных осцилляций центральной черной дыры в регулярном поле Галактики при современных оценках пекулярной скорости Sgr A\*.

Пробное тело помещалось в центр Галактики:

$$(x_0, y_0, z_0) = (0, 0, 0)$$

Численное интегрирование уравнений движения.

Начальные скорости пробного тела (в км/с)

| Варианты          | $V_r^{LSR}(BH)$ | $V_l^0(BH)$ | $V_b^{LSR}(BH)$ |
|-------------------|-----------------|-------------|-----------------|
| «Малый номинал»   | -3.0            | +3          |                 |
| «Большой номинал» | -4.1            | +7          | -0.9            |
| $\ll 2\sigma \gg$ | -7.1            | +16         | -2.3            |

Диск + сферическое гало + эллипсоидальный бар + сфероидальный балдж (Casetti-Dinescu+, 2013, кроме балджа). Диск: потенциал Миямото-Нагаи

$$\Phi(R,z) = -\frac{GM_{\rm d}}{\sqrt{R^2 + \left(a + \sqrt{z^2 + b^2}\right)^2}},$$
 (2)

a = 6.5 кпк, b = 0.26 кпк,  $M_{\rm d} = 1.1 \cdot 10^{11} M_{\odot};$ R — галактоосевое расстояние,  $R_0 = 8$  кпк. Гало: логарифмическая модель

$$\Phi(r) = v_{\rm h}^2 \ln(r^2 + d^2), \tag{3}$$

галактоцентрическое расстояние;

d = 12 кпк,  $v_{\rm h} = 121.9$  км/с.

#### Модельный потенциал Галактики. ІІ

Бар: трехосный эллипсоид с неоднородным распределением плотности — потенциал Феррера

$$\rho(m^2) = \begin{cases} \rho_0 \left(1 - m^2 / a_1^2\right)^n, & m \leqslant a_1, \\ 0, & m \geqslant a_1; \end{cases} \quad n = 2; \quad (4)$$

$$m^2 \equiv a_1^2 \sum_{i=1}^3 \frac{x_i^2}{a_i^2},$$
(5)

 $x_1, x_2, x_3$  — координаты в системе отсчета бара  $(x_1 - вдоль большой полуоси, x_2 - вдоль малой полуоси, x_3 - вдоль оси z);$   $a_1 = 3.14$  кпк,  $a_2 = 1.178$  кпк,  $a_3 = 0.81$  кпк — полуоси бара вдоль  $x_1, x_2, x_3$  соответственно.  $\varphi_0 = 25^\circ$  — угол наклона бара к линии центр-антицентр (галактоцентрическая долгота ближнего к Солнцу края бара).  $\omega_{\rm bar} = 20, 40, 60$  км/с/кпк — угловая скорость вращения бара.

#### Балдж

Модель Хернквиста, использованная Casetti-Dinescu+ (2013),

$$\Phi(r) = -\frac{GM_{\mathsf{b}}}{r+c},\tag{6}$$

оказалась непригодной для целей настоящего исследования —> Рассмотрено три других варианта задания потенциала балджа.

• Модель балджа Миямото-Нагаи

$$\Phi(R,z) = -\frac{GM_{\rm b}}{\sqrt{R^2 + \left(a_1 + \sqrt{z^2 + b_1^2}\right)^2}}.$$
 (7)

где  $a_1 = 0.04$  кпк,  $b_1 = 0.2$  кпк для  $R_0 = 8.5$  кпк (Нинкович, 1992) были умножены на поправочный коэффициент 8/8.5.

#### Модельный потенциал Галактики. IV

• Сфера Пламмера

$$\Phi(r) = -\frac{GM_{\rm b}}{\sqrt{r^2 + c_1^2}}\,,\tag{8}$$

 $c_1 = 0.3$  кпк (Кондратьев, Орлов, 2008).

• Изохронный потенциал (Binney, Tremaine, 2008)

$$\Phi(r) = -\frac{GM_{\rm b}}{b_1 + \sqrt{b_1^2 + r^2}},$$
(9)

где величина  $b_1 = 0.15$  кпк выбрана такой, чтобы значение потенциала в минимуме было близко к значению потенциала Пламмера, а сила принимала промежуточное значение между значениями в модели Пламмера и Миямото-Нагаи. Bland-Hawthorn & Gerhard (2016): для массы классического балджа можно указать только верхний предел. Варианты:

- Примем максимальный вклад балджа в массу центральной компоненты  $\implies$  массу бара будем считать равной 80% приведенного в работе Касетти-Динеску значения  $3.12\cdot 10^{10}M_{\odot}$  и массу балджа равной  $0.78\cdot 10^{10}M_{\odot}$ .
- Компоненты балджа нет, только бар (наиболее вероятная модель). Тогда его масса  $3.9\cdot 10^{10}M_{\odot}$ .

#### Сила и потенциал для моделей балджа и бара.



# $V^{\mathsf{LSR}}_r(\mathsf{BH}) = -3$ км/с, $V^0_l(\mathsf{BH}) = 0$ км/с



Потенциал Пламмера,  $\omega = 40 \ \text{км/с/кпк}$ 



Изохронный потенциал,  $\omega = 40$  км/с/кпк



Потенциал только бара,  $\omega = 40 \ {
m кm/c/кпк}$ 



29 / 37

И. И. Никифоров, А. В. Веселова

Движение тел вокруг Sgr A\* и проблема  $R_0$ 

## $V^{\mathsf{LSR}}_r(\mathsf{BH})=0$ км/с, $V^0_l(\mathsf{BH})=+3$ км/с



Изохронный потенциал,  $\omega = 40$  км/с/кпк



Потенциал только бара,  $\omega = 40 \ \text{км/с/кпк}$ 



-1

-2

-3

-3

-2

-1 0

Х. пк

2 3

Движение тел вокруг Sgr A\* и проблема  $\mathbf{R}_0$ 

# $V_r^{\mathsf{LSR}}(\mathsf{BH}) = -3$ км/с, $V_l^0(\mathsf{BH}) = +3$ км/с



31 / 37

Движение тел вокруг Sgr A\* и проблема  $\mathbf{R}_{\mathbf{0}}$ 

# $V_r^{\mathsf{LSR}}(\mathsf{BH}) = -4.1$ км/с, $V_l^0(\mathsf{BH}) = +7$ км/с



Изохронный потенциал,  $\omega = 40$  км/с/кпк

6

И. И. Никифоров, А. В. Веселова

Х. пк

-4

Х, пк Движение тел вокруг Sgr A\* и проблема  $R_0$ 

5 10 15 20 25

 $V_r^{\mathsf{LSR}}(\mathsf{B}\mathsf{H}) = -7$  км/с,  $V_l^0(\mathsf{B}\mathsf{H}) = +16$  км/с  $(2\sigma)$ 

Потенциал Миямото-Нагаи,  $\omega = 40 \text{ км/с/кпк}$ 



Потенциал Пламмера,  $\omega = 40 \ \text{км/с/кпк}$ 



Изохронный потенциал.  $\omega = 40 \text{ км/с/кпк}$ 



Бар без балджа,  $\omega$  = 40 км/с/кпк



33 / 37

Движение тел вокруг Sgr A\* и проблема  $R_0$ 

Sgr A\*: (l, b) = (-0.9056, -0.9046) (Reid & Brunthaler, 2004)  $\implies Z(BH) = (-6.4 \text{ nk}) \cdot (R_0/8 \text{ knk}).$  $Z_0 = 25 \pm 5 \text{ nk}$  (Jurić+, 2008)  $\implies$ 

Тогда расстояние от Sgr A\* до плоскости диска  $z({\rm BH})=Z_0+Z({\rm BH})=18.6\pm5$  пк.

Варианты:

 $z({\sf BH}) = 18.6$  пк («номинал»),  $z({\sf BH}) = 9$  пк (« $\sigma$ »).

김 글 동 김 글 동 - - - 글

#### Параметры вертикальных колебаний Sgr A\*

Начальная скорость — нулевая.

Начальные координаты:  $(x_0, y_0, z_0) = (0, 0, z_0).$ 

 $T_0$  — период вертикальных колебаний,

 $W_{\mathsf{max}} = \max |W|$  — амплитуда изменения вертикальной скорости W,

 $\Delta T_W$  — продолжительность фазы  $|W| \leq 2.7$  км/с.

| Модель балджа             | $T_0$ ,  | $W_{max}$ , | $\Delta T_W$ , | $\Delta T_W$ , |  |  |
|---------------------------|----------|-------------|----------------|----------------|--|--|
|                           | млн. лет | км/с        | млн. лет       | $\%$ от $T_0$  |  |  |
| $z_0 = 18.6$ пк (номинал) |          |             |                |                |  |  |
| Модель Пламмера           | 4.85     | 23.5        | 0.31           | 6.4            |  |  |
| Модель Миямото–Нагаи      | 3.13     | 36.4        | 0.13           | 4.1            |  |  |
| Изохронный потенциал      | 3.65     | 32.0        | 0.18           | 4.8            |  |  |
| Балджа нет (только бар)   | 9.27     | 12.6        | 1.11           | 12.0           |  |  |
| $z_0=9.0$ пк $(2\sigma)$  |          |             |                |                |  |  |
| Модель Пламмера           | 4.84     | 11.1        | 0.64           | 13.4           |  |  |
| Модель Миямото–Нагаи      | 3.12     | 17.3        | 0.27           | 8.5            |  |  |
| Изохронный потенциал      | 3.64     | 14.8        | 0.36           | 9.9            |  |  |
| Балджа нет (только бар)   | 9.27     | 5.8         | 2.39           | 25.9           |  |  |

Движение тел вокруг Sgr A\* и проблема  $\mathbf{R}_{\mathbf{0}}$ 

- Несмотря на прорывные успехи проекта GRAVITY и американской группы проблему расстояния до центра Галактики (*R*<sub>0</sub>) пока нельзя считать решенной, даже в понимании под центром именно Sgr A\*.
- При современных оценках пекулярной скорости центральной черной дыры ее осцилляции в регулярном поле в плоскости Галактики могут приводить к смещениям этого объекта относительно барицентра до десятков парсек.

## Выводы II

- Масштаб осцилляций сильно зависит от наличия/отсутствия компоненты классического балджа в дополнение к бару: при номинальных значениях компонент пекулярной скорости Sgr A\* размах колебаний не превышает 6 пк в случае наличия балджа и доходит до 25 пк, если балджа нет; при компонентах скорости в пределах уровня значимости 2σ колебания могут составлять 15 и 50 пк соответственно.
- Несмотря на малые значения измеренной линейной вертикальной скорости центральной черной дыры, сейчас нельзя исключить вертикальные ее осцилляции, т.е. ее расположение вне плоскости диска Галактики.

В настоящий момент нельзя сделать окончательные выводы, но прогрессе в этом направлении может быть очень быстрым...

→ < Ξ → <</p>