Исследование оптико-электронных систем измерения деформаций элементов конструкции радиотелескопа миллиметрового диапазона РТ-70

•Артеменко Ю.Н.¹, <u>Коняхин И.А.</u>², Тимофеев А.Н.²

●¹АКЦ ФИАН ●² СПБ ГУ ИТМО

Структура оптико-электронной измерительной системы (ОЭИС)

Санкт-Петербургский государственный университет информационных технологий, механики и оптики

Кафедра оптико-электронных приборов и систем

ОЭИС эффективны для измерения деформаций крупногабаритных объектов

Санкт-Петербургский государственный университет информационных технологий, механики и оптики

Кафедра оптико-электронных приборов и систем

ОЭИС измерения деформаций элементов конструкции по проекту модернизации РТ-70 (Уссурийск)

Цель модернизации – повышение эффективности работы РТ-70 (Уссурийск) на волнах длины 3,5 см и 1,35 см, что предполагает, в частности, уменьшение погрешности наведения РТ до 6"

ОЭИС является первичным преобразователем системы компенсации погрешностей наведения, определяемых деформацией элементов РТ

Санкт-Петербургский государственный университет информационных технологий, механики и оптики

Кафедра оптико-электронных приборов и систем

ОЭС измерения деформаций элементов опорно-поворотного устройства (ОПУ) РТ 70 (Уссурийск)

ОЭС измерения разворота подцапфенных конструкций в угломестной плоскости относительно вращающейся части опорно-поворотного устройства (ОПУ)

ОЭС измерения разворота подцапфенных конструкций в горизонтальной плоскости

ОЭС измерения разворота центральной колонны по азимуту

Типовые блоки ОЭС измерения деформаций элементов опорно-поворотного устройства (ОПУ) РТ 70 (Уссурийск)

Излучающий репер

Полноповоротный радиотелескоп миллиметрового диапазона РТ-70 (Суффа); выбор базы

Угловые деформации элементов конструкции РТ-70 (Суффа)

Величины углов Места и Азимута снимаются с датчиков Гиростабилизирован ной платформы $(\Gamma C \Pi),$ расположенной в точке пересечения угломестной оси и оси зеркальной системы

Оптико-электронные системы измерения угловых деформации элементов конструкции РТ-70 (Суффа)

ОЭС измерения углового положения Базового Кольца (деформаций сигары) ОЭС измерения положения цапф относительно ГСП (деформаций угломестной оси)

Погрешность измерения 1...2 угл. сек, диапазон измерения ₁₂ 10 угл.мин.

Оптико-электронные датчики системы коррекции угла азимута ГСП (измерения положения цапф угломестной оси относительно наземной базы)

Автоколлиматор и контрольное зеркало

Погрешность измерения угла поворота до и после компенсации. Дистанция 22,5 метра

Линейные деформации элементов конструкции РТ-70 (Суффа)

Весовые и температурные деформации приводят к смещениям контррефлектора на величину до 40 мм и Щитов Отражающей поверхности главного зеркала на величину до 30 мм.

ОЭС используются как первичные преобразователи автоматизированной системы коррекции положения Контррефлектора и системы коррекции поверхности Главного Зеркала

Измерительный канал определения координат контрольной точки на контррефлекторе

•Измерение координат контрольной точки выполняется триангуляционным методом.

•В контрольной точке расположен точечный источник излучения.

•Две видео-системы расположены на жесткой базе В.

•Измеряются углы визирования μ1,μ2,φ1,φ2 контрольной точки.

• Определяются Х,Ү, Координаты контрольной точки.

Оптико-электронная система измерения пространственного положения Контррефлектора

Общий вид макета физической модели ОЭИК

Выборочные значения абсолютной погрешности измерения, ось ОХ, СКО 0,006 мм, L = 3 м

21

Выборочные значения абсолютной погрешности измерения, ось ОҮ, СКО 0,007 мм

22

Канал измерения ОЭС

координат одной контрольной точки на поверхности зеркала

•Измерение *изменения* координат контрольной точки выполняется **методом визирования**.

•В контрольной точке расположен точечный источник излучения.

•Одна видео-система расположена на жесткой базе В.

•Измеряются *приращения* углов визирования µ1, φ1 контрольной точки.

Определяются *изменение* Х,Ү координат контрольной точки.
Погрешность измерения 0.05 мм

Приемный блок и точечный источник излучения (в устройстве перемещения)

24

Результаты эксперимента. Дистанция 45 м

Среднеквадратическое значение погрешности измерения смещения по оси X : $\sigma X = 0,06$ мм, по оси Y : $\sigma Y = 0,12$ мм (влияние

турбулентности)

Схема 3D контроля положения точек отражающей поверхности в различных поясах

Схема контроля положения точек отражающей поверхности на основе многоматричного канала

ОЭС с единым объективом и многоматричной структурой поля анализа

Система включает 8
измерительных
каналов
Измерительный канал
определяет Х, Ү
координаты в 19
контрольных точках.
Всего 152 точки.

Оптическая схема многоматричной системы контроля положения точек отражающей поверхности

Вариант конструктивного решения базового блока системы контроля положения точек отражающей поверхности

30

Кустовая ОЭС контроля положения промежуточных точек Главного Зеркала

Оптическая схема приемной части мультиматричной измерительной системы (47 контрольных точек)

Угловое поле базового блока

Схема контроля положения точек отражающей поверхности

на основе 24 мультиматричных систем

Спасибо

За внимание

Угловые параметры параболы в точке визирования А

а - нормаль к касательной с в точке визирования А, ОА - линия визирования,

β - угол между прямой *а* и линией визирования,

μ - угол визирования, ε - угол между осью ординат и линией визирования

Полигон для испытаний каналов оптикоэлектронных измерительных систем Подвижка с отсчетом

Контрольный элемент Коллиматор

Вариант измерения угла азимута по наземным реперам

Система измерения азимутальных углов поворота главного зеркала с помощью двух дальномеров

•Дальномеры установлены на наружной стороне цапф угломестной оси оси.

•Система использует метод трилатерации.

•Каждый прибор измеряет расстояние до трех отражателей..

Построения измерительного канала измерения азимутального

угла на основе оптико-электронных дальномеров

Требования, предъявляемые к точности измерения расстояния

47

Модель II канала измерения ОЭС определения координат одной точки на поверхности зеркала

•Измерение *изменения* координат контрольной точки выполняется триангуляционным методом.

•В контрольной точке расположен точечный источник излучения.

•Две видео-системы расположены на жесткой базе В.

•Измеряются *приращения* углов визирования μ1,μ2,φ1,φ2 контрольной точки.

• Определяются *изменение* X,Y,Z координат контрольной точки.

Алгоритм контроля и коррекции поверхности Главного Зеркала

Структурная схема автоколлиматора

Система для измерения смещения по одной контрольной точке, состоит из двух видео камер: Объектив 1 с фотоприемником CCD 1 и Объектив 2 с фотоприемником CCD 2.

- Каждый видео канал измеряет углы ф1,ф2 and µ1, µ2 в ИК свете излучающего диода (LED)
- Видео кадр ССD и координаты X,Y,Z LED обрабатываются микропроцессором

Углы φ1,φ2 в горизонтальной плоскости и углы μ1, μ2 в вертикальной плоскости определены из уравнений:

$$\mu 1 = arctg\left(\frac{-y1}{f}\right) \quad \mu 2 = arctg\left(\frac{-y2}{f}\right)$$

$$\varphi 2 = \frac{\pi}{2} + arctg\left(\frac{x^2}{f}\right) \quad \varphi 1 = \frac{\pi}{2} - arctg\left(\frac{x^2}{f}\right)$$

Координаты LED определяются уравнениями:

$$x = \frac{B \cdot tg(\pi - \varphi 2)}{tg(-\varphi 1) + tg(\pi - \varphi 2)}$$

Где *у1,х*1; *у2,х2* координаты LED's изображения на ССD 1 и ССD2, *f* фокус объектива 1 или объектива 2.

$$z = \frac{B \cdot tg(-\varphi 1) \cdot tg(\pi - \varphi 2)}{tg(-\varphi 1) + tg(\pi - \varphi 2)}$$

$$y = 0.5 \cdot \sqrt{x^2 + z^2} \cdot tg(\mu 1) + 0.5 \cdot \sqrt{z^2 + (B - x)^2} \cdot tg(\mu 2)$$

Универсальная экспериментальная видео-система спроектированная для измерений линейных смещений контрольной точки.

Схема измерения угла АZ

Схема автоколлимационной системы

