Радиоастрономическая конференция "Повышение эффективности и модернизация радиотелескопов России" 22-26 сентября 2008г. пос. Нижний Архыз, САО РАН

> Работы школы Н.А.ЕСЕПКИНОЙ в области акустооптических процессоров радиосигналов и их внедрения в радиоастрономию

А.П. Лавров, И.И. Саенко

Санкт-Петербургский государственный политехнический университет

Центр Оптоэлектронных проблем информатики

Нэля Александровна ЕСЕПКИНА 1930-2008

Более полувека в Ленинградском политехническом институте:

Инженер-исследователь, спец. «Техническая физика» (1954, с отличием)

К.т.н., спец. «Радиофизика» (1958)

Д.ф.-м.н., спец. «Радиоастрономия» (1971)

Профессор, каф. «Квантовой электроники» (1973)

Лауреат Государственной премии СССР (1984)

Заслуженный деятель науки и техники РФ (1994)

Создатель и руководитель

отраслевой лабораторией «Новые методы обработки СВЧ-сигналов», научно-учебным центром «Оптоэлектронные информационные системы»

Первый рубеж:

- МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ СССР
- ЛЕНИНГРАДСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ им. М.И. Калинина
 - Аспирант Н.А. ЕСЕПКИНА
 - ОСТРОНАПРАВЛЕННЫЕ ЗЕРКАЛЬНЫЕ АНТЕННЫ С ПЕРЕМЕННЫМ ПРОФИЛЕМ ОТРАЖАТЕЛЯ ДЛЯ РАДИОТЕЛЕСКОПОВ
 - Диссертация на соискание ученой степени кандидата технических наук

- Научный руководитель
- доктор технических наук
- профессор З.И. Модель
- Научный консультант
- доктор технических наук
- профессор Б.В. Брауде

Ленинград 1958 г.

Дальнейшее развитие:

Есепкина Н.А., Корольков Д.В., Парийский Ю.Н. Радиотелескопы и радиометры.- М.: Наука.- 1973. Первый рубеж:

- МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ СССР
- ЛЕНИНГРАДСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ им. М.И. Калинина
 - Аспирант Н.А. ЕСЕПКИНА
 - ОСТРОНАПРАВЛЕННЫЕ ЗЕРКАЛЬНЫЕ АНТЕННЫ С ПЕРЕМЕННЫМ ПРОФИЛЕМ ОТРАЖАТЕЛЯ ДЛЯ РАДИОТЕЛЕСКОПОВ
 - Диссертация на соискание ученой степени кандидата технических наук

- Научный руководитель
- доктор технических наук
- профессор З.И. Модель
- Научный консультант
- доктор технических наук
- профессор Б.В. Брауде

Ленинград 1958 г.

Дальнейшее развитие:

Есепкина Н.А., Корольков Д.В., Парийский Ю.Н. РАДИОТЕЛЕСКОПЫ и РАДИОМЕТРЫ.- М.: Наука.- 1973. Санкт-Петербыргский Госыдарственный политехнический ыниверситет Радиофизический факыльтет

НАЧЧНО-УЧЕБНЫЙ ЦЕНТР "ОПТОЭЛЕКТРОННЫЕ ПРОБЛЕМЫ ИНФОРМАТИКИ"

Направления исследований в ЛПИ (СПБГПУ)

- Антенная техника, АПП
- Оптическое моделирование характеристик антенн
- Элементная база акустооптики, многоэлементные ПЗС-фотоприемники
- Акустооптические процессоры радиосигналов в специальных системах
 - Обработка сигналов антенных решеток, РСА
 - Корреляторы, Сжатие ЛЧМ- и ДЧМ- сигналов и др.
- Акустооптические процессоры радиосигналов для радиоастрономии
 - Акустооптические спектрометры
 - Акустооптическое диаграммоформирующее устройство для Сибирского солнечного радиотелескопа
 - Акустооптический спектрометр для озонометрии
 - Оптоэлектронный процессор для обработки сигналов пульсаров (пульсарный процессор)
- Системы сбора и цифровой обработки сигналов

Когерентный оптический процессор

A lens makes a Fourier Transform of the input coherent field at its rear focal plane

- 2-D Processing Power: 10³ x 10³ FT in 1 nanosec (if F=15cm)
- $(10^6)^2$ at / 10^{-9} sec = 10^{21} analog multiples and summations per sec
- FFT equivalent $N \log N$: 20 x 10⁶ at / 10⁻⁹ sec = 2 x 10¹⁶ FLOPS
- Traditionally limited by *input SLM* frame rate and *CCD detector array* readout
- $(10^6)^2$ at / 10^{-2} sec = 10^{14} analog multiples and summations/sec
- FFT equivalent $N \log N$: 10⁶ x 20 at / 10⁻² sec = 2 GFLOPS

Когерентный оптический процессор для сигналов ФАР

Параллельный обзор пространства и частотный анализ э.м. излучения

Рис. 13. Фазирова нная антенная решетка для приема сигн лов излучателей.

Рис. 14. Многоканальный спектроанализатор для сортировки излучателей.

Когерентный оптический процессор для сигналов ФАР (ERIM, Michigan)

Акустооптические модуляторы

•Жидкостный 48-канальный модулятор (процессор ФАР). •Широкополосные АО модуляторы на кристалле LiNbO₃ АО устройства в приемных комплексах радиотелескопов: спектрометры, корреляторы, пульсарные процессоры

Первый акустооптический спектрометр

Тревор Коул. Электронно - оптический радиоспектрограф. // ТИИЭР.-1973.- Т.61, №9.- С.203-205. D.K. MILNE, T.W. COLE. A broad-band Radio Astronomy Spectrometer // Proc IREE Australia.- 1979, March.-P.43-46. Созданы первые отечественные 80-е годы: оптоэлектронные системы для спектральных исследований в радиоастрономии акустооптические спектрометры F мол Μ 1кГц "звездный" К СВЧ приемник ФПЗС Цифровая Акустооптически система сбора ЭВМ Преобразои обработки спектроанализат ватель часпы данных

В.Г.Грачев, Н.А.Есепкина, И.М.Кочергина, С.В.Прусс-Жуковский, Н.Ф.Рыжков, А.И.Шишкин, Акустооптический спектрометр для радиотелескопа РАТАН-600 // Письма в АЖ.- т.10.- N6,-1984.- с.474-490.

Акустооптические спектрометры

Фурье-преобразование в реальном времени сигналов в полосе частот до 1 ГГц с числом каналов до 1000.

500-канальный АОС с полосой 80 МГц

Сотрудничество: с Институтом прикладной физики РАН (г. Н.Новгород) и Радиоастрономическим институтом НАН Украины (г. Харьков).

1998г. АО спектрометр используется для исследования спектров молекулярных линий миллиметрового диапазона -- РТ-22, Семеиз, Крым

Есепкина Н.А., Зинченко И.И., Саенко И.И., Антюфеев А.В., Вдовин В.Ф., Елисеев А.И., Круглов С.К., Лапкин И.В., Мышенко В.В., Нестеров В.С., Пирогов Л.Е., Шанин В.Н., Штанюк А.М., Шульга В.М. Спектральные наблюдения в 3-мм диапазоне длин волн на радиотелескопе РТ-22 КрАО с использованием акустооптического анализатора спектра // Известия ВУЗов. Радиофизика.- 2000,- Т.XLIII, N11.- С.935.

1000-канальный АОС с полосой 500 МГц, применение для наблюдения излучения озона

Acoustooptic processor's package

Technical Specifications of two AOS

	AOS-W	AOS-H
IF center frequency	1.75 GHz	150 MHz
Instantaneous bandwidth	500 MHz	80 MHz
Number of spectral	1000	1000
channels		
Channel bandwidth	0.5 MHz	80 kHz
Dynamic range	25 dB	26 dB
Laser source	He-Ne	He-Ne
Bragg cell	LiNbO ₃	TeO ₂
Power consumption	40 W	50 W

Overview of a complete optoelectronic system

An example ozone spectral line measured

Есепкина Н.А., Кропоткина Е.П., Круглов С.К., Леонов В.Н., Лукин А.Н., Розанов С.Б., Саенко И.И., Соломонов С.В. Радиометрический комплекс с акустооптическим анализатором спектра для исследований атмосферного озона на частоте 142 ГГц // Успехи современной радиоэлектроники, 2003, №1.- С.52-60.

2 канальный АОС

AO processor's outputs for the wideband (80 MHz) noise input: a) - as it camera captures; b) - after computer processing.

Normalised passbands of both space channels

АО процессор в приемном комплексе Сибирского солнечного радиотелескопа (ССРТ) а)

Сравнение приемных комплексов ССРТ 1987 г.

Фильтровой

Акустооптический

Сканы радиоизображения Солнца: Гречнев В.В., Есепкина Н.А., Занданов В.Г., Качев Л.Е., Мансырев М.И., Молодяков С.А., Саенко И.И., Смольков Г.Я., Шипов Л.М. Исследование макета акустооптоэлектронного приемника на Сибирском солнечном радиотелескопе. // Письма в ЖТФ.-1988. Т.14, вып.7, с.581.

АО коррелятор для ССРТ

АО пульсарный процессор в приемном комплексе РТ-64

Есепкина Н.А., Илясов Ю.П., Лавров А.П., Молодяков С.А., Орешко В.В. Применение акустооптического процессора для наблюдения радиоизлучения пульсаров // Письма в ЖТФ.- 2003.- Т.29, Вып.21.- С.32-39.

Акустооптический пульсарный процессор конвейерного типа. СПбГПУ

• Скорость дрейфа излучения пульсара :

$$V_{DM} = \frac{\partial f}{\partial t} = \frac{f^3}{8,3 \cdot 10^3} DM, [M\Gamma u/c]$$

 Скорость перемещения зарядовых пакетов:

$$V_{CCD} = \frac{\delta f_a}{T_{sh}} = \frac{\Delta F}{\Delta N \cdot T_{sh}}, [M \Gamma u/c]$$

Особенность: непрерывный конвейерный режим работы ФПЗС

Конвейерный режим работы ФПЗС

по поверхности сканирующего ФПЗС V_{IM} poly Si $I(t_1)$ $I(t_2)$ $I(t_3)$ • • • V_{IM} poly Si hν -SiO₂ V_{W} Si t_1 t_2 t₃ t...

Движение оптического сигнала и потенциальных ям

Эквивалентная схема сканирующего ФПЗС

Высокая селективность по выделению движущегося отклика - влияние разности скоростей

+ Инвариантность к моменту прихода

Сравнение профилей импульсов пульсаров, полученных на радиотелескопе РТ-64 (г.Калязин) и в каталоге Effelsberg Получено в наблюдениях в 2002г с использованием АОП (Частота приема 1.4 ГГц, полоса 40 МГц)

Пульсар	PT-64	Effelsberg
1. PSR 0329+54 DM- 262, P-D.714 c S- 200 ¥88	M	
2. PSR 2111+46 DM-141-30, P-1-013, S-141-3 2 /89	and the second	
3. PSR 2021+51 DM-72325, P-D370 G, S-19 ¥88	anna competing	
4. PSR 1713+07 DM-15,990, P-457 ac, S-4 <mark>& Ap</mark>	- Am	
5. PSR 0613-02 DM-38.783, P-3 D6 wc, S-7.3 w.3 R	~h	
6. PSR 1640+2224 DM-18.415 P-0.160 ac, S-0.5 & SR	Marin Harry	
7. PSR 1643-1224 DM-624 P-4 <i>6</i> 2 w: S-J w3R	Mary	

Фильтровой и АО пульсарные процессоры на радиотелескопе РТ-64 на частоте 1,4 ГГц

Метод калибровки частотной шкалы с использованием гребенки реперов

	ВРЕМЯ І	ИНТЕГРИРОВА	АНИЯ(τ)		
•	T _{CH}				
SA		S _K]]
0 0	ו ד	 	[] [²	 TM	↓ T

Fre	Frequency reference marks			
	Number of	Harmonic		
Ν	CCD	frequency,		
	pixels with	MHz		
	maximums			
1	58	195		
2	119	190		
3	181	185		
4	242	180		
5	304	175		
6	365	170		
7	426	165		
8	487	160		
9	547	155		
10	608	150		
11	668	145		
12	729	140		

Калибровка, контроль положения частотной шкалы

Аппроксимированная частотная шкала АО процессора

n

Смещение репера с частотой 165 МГц во времени

Результаты применения метода периодических частотных калибровок шкалы АО процессора

Профили импульсов пульсара PSR 1937+21, полученные с месячным интервалом:

Измеренное смещение профилей (корреляционная обработка) составляет - 0,45 временного дискрета (разрешения) при регистрации.

Калибровка частотной шкалы АОП дает временную поправку - 0,4 временного дискрета и устраняет смещение.

Приемный комплекс радиотелескопа РТ-64 для наблюдения пульсаров на частотах 0,6 и 1,4 ГГц

Дисперсионное запаздывание импульсов миллисекундного пульсара PSR 1937+21 на двух частотах

18.06.03 РТ-64 (г.Калязин)

1425 МГц АОП

600 МГц АС

Дата наблюдения	Измеренная DM
18.06.03	71.0233
19.06.03	71.0221
20.06.03	71.0214
21.06.03	71.0234
17.06.04	71.0215
18.06.04	71.0206

DM=71.04 по каталогу 1990г.

Профили импульсов пульсара PSR 0329+54

Перспектива. Двухканальный ОЭ процессор для измерения поляризации радиоизлучения и интерференционная картина в его выходной плоскости

Системы сбора и цифровой обработки сигналов

1. Цифровой радиометрический модуль с сетевым интерфейсом

Иванов С.И., Круглов С.К., Мардышкин В.В., Михайлов А.Г. Цифровые выходные устройства для радиометрического режима работы радиотелескопа. Доклад в ПРАО ФИАН, 2006г.

Рис. 1. Внешний вид модуля ЦРМС, установленного в надзеркальной кабине радиотелескопа РТФ-32

Системы сбора и цифровой обработки сигналов

2. Транзисторный СВЧ детектор мощности для широкополосного приемника

Есепкина Н.А., Иванов С.И., Лавров А.П., Матвеев Ю.А. Разработка и исследование транзисторного СВЧ детектора . 2008 (в печати).

2. Транзисторный СВЧ детектор мощности для широкополосного приемника

Сравнение результатов моделирования, теоретического анализа и экспериментального исследования

Параметр детектора	Моделиро- вание	Теория	Эксперимент
Ширина полосы частот СВЧ сигнала (ЗдБ) мГц	1800	_	1800
Неравномерность АЧХ в рабочей полосе дБ	±0,5	—	±0,3
Чувствительность по напряжению мВ/мкВт	140	140	130
Тангенциальная чувствительность дБм	-62	-61,5	-61,6
Граничная мощность дБм	-20	-17	-20
Динамический диапазон квадратичного детектирования дБ	42	44,5	41,6
Уровень собственных шумов (по выходу) мкВ	50	81	75
Температурная нестабильность U _{вых} при ΔT=18 ⁰ С %	6	12	8
Полоса выходного фильтра НЧ кГц	80	100	80
Максимальное изменение U _{вых} , из-за нестабильности напряжения Ист. Пит. %	-	1	-

Сравнение основных параметров современных диодных СВЧ детекторов с параметрами опытного образца транзисторного СВЧ детектора

Детекторная камера 8471D фирмы «Agilent Technologies»

Детекторная камера M33402

Опытный образец

Параметр детектора	8174D	M33402	Опытный образец
Ширина полосы частот СВЧ сигнала (ЗдБ) МГц	2000	5000	1800
Неравномерность АЧХ в рабочей полосе дБ	±0,3	±0,5	±0,3
Чувствительность по напряжению мВ/мкВт	0,5	0,1-0,3	130
Тангенциальная чувствительность дБм	-50	-46	-61,6
Граничная мощность дБм	0	-16	-20
Динамический диапазон квадратичного детектирования дБ	30	30	41,6
Температурная нестабильность U _{вых} при ΔТ=18 ⁰ С %	12	15	8
КСВ по входу детектора не более	1,23	1,4	1,5 (моделирование)
Максимальная входная мощность мВт	100	10	80

Среди радиоастрономов. Семинар в ИПФ РАН (Н.Новгород, 2001)

XV-th European Frequency and Time Forum IEFTF. 2002, St-Petersburg, Russia.

Всероссийские конференции по оптической обработке информации, 90-е годы (на борту теплоходов, оз.Ладога, оз.Онега)

Спасибо за внимание!

